A genetic approach to visualization of multisynaptic neural pathways using plant lectin transgene. (1/815)

The wiring patterns among various types of neurons via specific synaptic connections are the basis of functional logic employed by the brain for information processing. This study introduces a powerful method of analyzing the neuronal connectivity patterns by delivering a tracer selectively to specific types of neurons while simultaneously transsynaptically labeling their target neurons. We developed a novel genetic approach introducing cDNA for a plant lectin, wheat germ agglutinin (WGA), as a transgene under the control of specific promoter elements. Using this method, we demonstrate three examples of visualization of specific transsynaptic neural pathways: the mouse cerebellar efferent pathways, the mouse olfactory pathways, and the Drosophila visual pathways. This strategy should greatly facilitate studies on the anatomical and functional organization of the developing and mature nervous system.  (+info)

Synapses involving auditory nerve fibers in primate cochlea. (2/815)

The anatomical mechanisms for processing auditory signals are extremely complex and incompletely understood, despite major advances already made with the use of electron microscopy. A major enigma, for example, is the presence in the mammalian cochlea of a double hair cell receptor system. A renewed attempt to discover evidence of synaptic coupling between the two systems in the primate cochlea, postulated from physiological studies, has failed. However, in the outer spiral bundle the narrow and rigid clefts seen between pairs of presumptive afferent fibers suggest the possibility of dendro-dendritic interaction confined to the outer hair cell system. The clustering of afferent processes within folds of supporting cells subjacent to outer hair cells is in contrast to the lack of such close associations in the inner hair cell region. The difference reinforces the suggestion of functional interaction of some sort between the outer hair cell afferent nerve processes.  (+info)

Projections and firing properties of down eye-movement neurons in the interstitial nucleus of Cajal in the cat. (3/815)

To clarify the role of the interstitial nucleus of Cajal (INC) in the control of vertical eye movements, projections of burst-tonic and tonic neurons in and around the INC were studied. This paper describes neurons with downward ON directions. We examined, by antidromic activation, whether these down INC (d-INC) neurons contribute to two pathways: a commissural pathway to the contralateral (c-) INC and a descending pathway to the ipsilateral vestibular nucleus (i-VN). Stimulation of the two pathways showed that as many as 74% of neurons were activated antidromically from one of the pathways. Of 113 d-INC neurons tested, 44 were activated from the commissural pathway and 40 from the descending pathway. No neurons were activated from both pathways. We concluded that commissural and descending pathways from the INC originate from two separate groups of neurons. Tracking of antidromic microstimulation in the two nuclei revealed multiple low-threshold sites and varied latencies; this was interpreted as a sign of existence of axonal arborization. Neurons with commissural projections tended to be located more dorsally than those with descending projections. Neurons with descending projections had significantly greater eye-position sensitivity and smaller saccadic sensitivity than neurons with commissural projections. The two groups of INC neurons increased their firing rate in nose-up head rotations and responded best to the rotation in the plane of contralateral posterior/ipsilateral anterior canal pair. Neurons with commissural projections showed a larger phase lag of response to sinusoidal rotation (54.6 +/- 7.6 degrees ) than neurons with descending projections (45.0 +/- 5.5 degrees ). Most neurons with descending projections received disynaptic excitation from the contralateral vestibular nerve. Neurons with commissural projections rarely received such disynaptic input. We suggest that downward-position-vestibular (DPV) neurons in the VN and VN-projecting d-INC neurons form a loop, together with possible commissural loops linking the bilateral VNs and the bilateral INCs. By comparing the quantitative measures of d-INC neurons with those of DPV neurons, we further suggest that integration of head velocity signals proceeds from DPV neurons to d-INC neurons with descending projections and then to d-INC neurons with commissural projections, whereas saccadic velocity signals are processed in the reverse order.  (+info)

Defects in thalamocortical axon pathfinding correlate with altered cell domains in Mash-1-deficient mice. (4/815)

We have analyzed the pathfinding of thalamocortical axons (TCAs) from dorsal thalamus to neocortex in relation to specific cell domains in the forebrain of wild-type and Mash-1-deficient mice. In wild-type mice, we identified four cell domains that constitute the proximal part of the TCA pathway. These domains are distinguished by patterns of gene expression and by the presence of neurons retrogradely labeled from dorsal thalamus. Since the cells that form these domains are generated in forebrain proliferative zones that express high levels of Mash-1, we studied Mash-1 mutant mice to assess the potential roles of these domains in TCA pathfinding. In null mutants, each of the domains is altered: the two Pax-6 domains, one in ventral thalamus and one in hypothalamus, are expanded in size; a complementary RPTP(delta) domain in ventral thalamus is correspondingly reduced and the normally graded expression of RPTP(delta) in that domain is no longer apparent. In ventral telencephalon, a domain characterized in the wild type by Netrin-1 and Nkx-2.1 expression and by retrogradely labeled neurons is absent in the mutant. Defects in TCA pathfinding are localized to the borders of each of these altered domains. Many TCAs fail to enter the expanded, ventral thalamic Pax-6 domain that constitutes the most proximal part of the TCA pathway, and form a dense whorl at the border between dorsal and ventral thalamus. A proportion of TCAs do extend further distally into ventral thalamus, but many of these stall at an aberrant, abrupt border of high RPTP(delta) expression. A small proportion of TCAs extend around the RPTP(delta) domain and reach the ventral thalamic-hypothalamic border, but few of these axons turn at that border to extend into the ventral telencephalon. These findings demonstrate that Mash-1 is required for the normal development of cell domains that in turn are required for normal TCA pathfinding. In addition, these findings support the hypothesis that ventral telencephalic neurons and their axons guide TCAs through ventral thalamus and into ventral telencephalon.  (+info)

A changing pattern of brain-derived neurotrophic factor expression correlates with the rearrangement of fibers during cochlear development of rats and mice. (5/815)

The reorganization of specific neuronal connections is a typical feature of the developing nervous system. It is assumed that the refinement of connections in sensory systems requires spontaneous activity before the onset of cochlear function and selective sensory experience during the ensuing period. The mechanism of refinement through sensory experience is currently postulated as being based on the selective reinforcement of active projections by neurotrophins. We studied a presumed role of neurotrophins for rearrangement of afferent and efferent fibers before the onset of sensory function in the precisely innervated auditory end organ, the cochlea. We observed a spatiotemporal change in the localization of brain-derived neurotrophic factor (BDNF) protein and mRNA, which correlated with the reorganization of fibers. Thus, BDNF decreased in target hair cells during fiber retraction and was subsequently upregulated in neurons, target hair cells, and adjacent supporting cells concomitant with the formation of new synaptic contacts. Analysis of the innervation pattern in BDNF gene-deleted mice by immunohistochemistry and confocal microscopy revealed a failure in the rearrangement of fibers and a BDNF dependency of distinct neuronal projections that reorganize in control animals. Our data suggest that, before the onset of auditory function, a spatiotemporal change in BDNF expression in sensory, epithelial, and neuronal cells may guide the initial steps of refinement of the innervation pattern.  (+info)

Motor pattern specification by dual descending pathways to a lobster rhythm-generating network. (6/815)

In the European lobster Homarus gammarus, rhythmic masticatory movements of the three foregut gastric mill teeth are generated by antagonistic sets of striated muscles that are driven by a neural network in the stomatogastric ganglion. In vitro, this circuit can spontaneously generate a single (type I) motor program, unlike in vivo in which gastric mill patterns with different phase relationships are found. By using paired intrasomatic recordings, all elements of the gastric mill network, which consists mainly of motoneurons, have been identified and their synaptic relationships established. The gastric mill circuit of Homarus is similar to that of other decapod crustaceans, although some differences in neuron number and synaptic connectivity were found. Moreover, specific members of the lobster network receive input from two identified interneurons, one excitatory and one inhibitory, that project from each rostral commissural ganglion. Integration of input from these projection elements is mediated by synaptic interactions within the gastric mill network itself. In arrhythmic preparations, direct phasic stimulation of the previously identified commissural gastric (CG) interneuron evokes gastric mill output similar to the type I pattern spontaneously expressed in vitro and in vivo. The newly identified gastric inhibitor interneuron makes inhibitory synapses onto a different subset of gastric mill neurons and, when activated with the CG neuron, drives gastric mill output similar to the type II pattern that is only observed in the intact animal. Thus, two distinct phenotypes of gastric mill network activity can be specified by the concerted actions of parallel input pathways and synaptic connectivity within a target central pattern generator.  (+info)

Anatomic, intrinsic, and synaptic properties of dorsal and ventral division neurons in rat medial geniculate body. (7/815)

Anatomic, intrinsic, and synaptic properties of dorsal and ventral division neurons in rat medial geniculate body. Presently little is known about what basic synaptic and cellular mechanisms are employed by thalamocortical neurons in the two main divisions of the auditory thalamus to elicit their distinct responses to sound. Using intracellular recording and labeling methods, we characterized anatomic features, membrane properties, and synaptic inputs of thalamocortical neurons in the dorsal (MGD) and ventral (MGV) divisions in brain slices of rat medial geniculate body. Quantitative analysis of dendritic morphology demonstrated that tufted neurons in both divisions had shorter dendrites, smaller dendritic tree areas, more profuse branching, and a greater dendritic polarization compared with stellate neurons, which were only found in MGD. Tufted neuron dendritic polarization was not as strong or consistent as earlier Golgi studies suggested. MGV and MGD cells had similar intrinsic properties except for an increased prevalence of a depolarizing sag potential in MGV neurons. The sag was the only intrinsic property correlated with cell morphology, seen only in tufted neurons in either division. Many MGV and MGD neurons received excitatory and inhibitory inferior colliculus (IC) inputs (designated IN/EX or EX/IN depending on excitation/inhibition sequence). However, a significant number only received excitatory inputs (EX/O) and a few only inhibitory (IN/O). Both MGV and MGD cells displayed similar proportions of response combinations, but suprathreshold EX/O responses only were observed in tufted neurons. Excitatory and inhibitory postsynaptic potentials (EPSPs and IPSPs) had multiple distinguishable amplitude levels implying convergence. Excitatory inputs activated alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors the relative contributions of which were variable. For IN/EX cells with suprathreshold inputs, first-spike timing was independent of membrane potential unlike that of EX/O cells. Stimulation of corticothalamic (CT) and thalamic reticular nucleus (TRN) axons evoked a GABAA IPSP, EPSP, GABAB IPSP sequence in most neurons with both morphologies in both divisions. TRN IPSPs and CT EPSPs were graded in amplitude, again suggesting convergence. CT inputs activated AMPA and NMDA receptors. The NMDA component of both IC and CT inputs had an unusual voltage dependence with a detectable DL-2-amino-5-phosphonovaleric acid-sensitive component even below -70 mV. First-spike latencies of CT evoked action potentials were sensitive to membrane potential regardless of whether the TRN IPSP was present. Overall, our in vitro data indicate that reported regional differences in the in vivo responses of MGV and MGD cells to auditory stimuli are not well correlated with major differences in intrinsic membrane features or synaptic responses between cell types.  (+info)

24-hour leg and forearm haemodynamics in transected spinal cord subjects. (8/815)

OBJECTIVE: A circadian rhythm of blood pressure has been demonstrated both in subjects who are physically active during the day and in those confined to bed. The study of the circadian rhythm of arterial flow and peripheral resistance, on the other hand, is limited to pioneer experiments. This paper is aimed at demonstrating that leg peripheral resistance has circadian fluctuations which are modulated by spinal neural traffic. METHODS: Eleven normal (able-bodied) human subjects and 11 patients with spinal transection due to spinal cord injury (SCI) were studied. They were confined to bed for 24 h. Blood pressure and heart rate were monitored every 15 min with an automatic device and leg flow with an automatic strain-gauge plethysmograph synchronised to the pressurometer. Peripheral resistance was calculated at the same intervals. RESULTS: In able-bodied subjects leg resistance was significantly higher during waking hours (when the sympathetic system is more activated) than during sleep, while in subjects with spinal cord injury no difference was detected between day-time and night-time. CONCLUSIONS: The circadian rhythm is controlled by adrenergic fibres transmitted via the spinal cord.  (+info)