Determination of tin, vanadium, iron, and molybdenum in various matrices by atomic absorption spectrometry using a simultaneous liquid-liquid extraction procedure. (1/459)

An atomic-absorption spectrometric method is described for the determination of tin, vanadium, iron, and molybdenum in two certified reference materials, food samples, and petroleum crude. After treatment with acids, these elements are separated from matrix elements by simultaneous solvent extraction of 5,5'-methylenedisalicylohydroxamic acid complexes from HCl/NaClO4 solution into an isobutyl methyl ketone/tributyl phosphate solution. The detection limits range from 0.018 to 0.19 microg/mL (n = 3), and the relative standard deviations do not exceed 2.0% at levels of 0.5, 0.6, 2.0, and 7.0 microg/mL of Fe, Mo, V, and Sn, respectively. The method is selective and suffers only from interference by Zr(IV), Ti(IV), Th(IV), W(VI), PO4(3-), and F-.  (+info)

Respiratory epithelial cells demonstrate lactoferrin receptors that increase after metal exposure. (2/459)

Human airway epithelial cells can increase expression of both lactoferrin and ferritin after exposure to catalytically active metal. These proteins transport and store metal, with coordination sites fully complexed, and therefore can diminish the oxidative stress. The intracellular transport of lactoferrin results in a transfer of complexed metal to ferritin, where it is stored in a less reactive form. This effort to control the injurious properties of metals would be facilitated by lactoferrin receptors (LfRs) on airway epithelial cells. We tested the hypotheses that 1) LfRs exist on respiratory epithelial cells and 2) exposure to both an air pollution particle, which has abundant concentrations of metals, and individual metal salts increase the expression of LfRs. Before exposure to either the particle or metals, incubation of BEAS-2B cells with varying concentrations of 125I-labeled lactoferrin demonstrated lactoferrin binding that was saturable. Measurement of 125I-lactoferrin binding after the inclusion of 100 micrograms/ml of oil fly ash in the incubation medium demonstrated increased binding within 5 min of exposure, which reached a maximal value at 45 min. Inclusion of 1.0 mM deferoxamine in the incubation of BEAS-2B cells with 100 micrograms/ml of oil fly ash decreased lactoferrin binding. Comparable to the particle, exposure of BEAS-2B cells to either 1.0 mM vanadyl sulfate or 1.0 mM iron (III) sulfate, but not to nickel sulfate, for 45 min elevated LfR activity. We conclude that LfRs on respiratory epithelial cells increased after exposure to metal. LfRs could participate in decreasing the oxidative stress presented to the lower respiratory tract by complexing catalytically active metals.  (+info)

A vanadium and iron cluster accumulates on VnfX during iron-vanadium-cofactor synthesis for the vanadium nitrogenase in Azotobacter vinelandii. (3/459)

The vnf-encoded nitrogenase from Azotobacter vinelandii contains an iron-vanadium cofactor (FeV-co) in its active site. Little is known about the synthesis pathway of FeV-co, other than that some of the gene products required are also involved in the synthesis of the iron-molybdenum cofactor (FeMo-co) of the widely studied molybdenum-dinitrogenase. We have found that VnfX, the gene product of one of the genes contained in the vnf-regulon, accumulates iron and vanadium in a novel V-Fe cluster during synthesis of FeV-co. The electron paramagnetic resonance (EPR) and metal analyses of the V-Fe cluster accumulated on VnfX are consistent with a VFe7-8Sx precursor of FeV-co. The EPR spectrum of VnfX with the V-Fe cluster bound strongly resembles that of isolated FeV-co and a model VFe3S4 compound. The V-Fe cluster accumulating on VnfX does not contain homocitrate. No accumulation of V-Fe cluster on VnfX was observed in strains with deletions in genes known to be involved in the early steps of FeV-co synthesis, suggesting that it corresponds to a precursor of FeV-co. VnfX purified from a nifB strain incapable of FeV-co synthesis has a different electrophoretic mobility in native anoxic gels than does VnfX, which has the V-Fe cluster bound. NifB-co, the Fe and S precursor of FeMo-co (and presumably FeV-co), binds to VnfX purified from the nifB strain, producing a shift in its electrophoretic mobility on anoxic native gels. The data suggest that a precursor of FeV-co that contains vanadium and iron accumulates on VnfX, and thus, VnfX is involved in the synthesis of FeV-co.  (+info)

Heterologous expression of the vanadium-containing chloroperoxidase from Curvularia inaequalis in Saccharomyces cerevisiae and site-directed mutagenesis of the active site residues His(496), Lys(353), Arg(360), and Arg(490). (4/459)

The vanadium-containing chloroperoxidase from the fungus Curvularia inaequalis is heterologously expressed to high levels in the yeast Saccharomyces cerevisiae. Characterization of the recombinant enzyme reveals that this behaves very similar to the native chloroperoxidase. Site-directed mutagenesis is performed on four highly conserved active site residues to examine their role in catalysis. When the vanadate-binding residue His(496) is changed into an alanine, the mutant enzyme loses the ability to bind vanadate covalently resulting in an inactive enzyme. The negative charges on the vanadate oxygens are compensated by hydrogen bonds with the residues Arg(360), Arg(490), and Lys(353). When these residues are changed into alanines the mutant enzymes lose the ability to effectively oxidize chloride but can still function as bromoperoxidases. A general mechanism for haloperoxidase catalysis is proposed that also correlates the kinetic properties of the mutants with the charge and the hydrogen-bonding network in the vanadate-binding site.  (+info)

Bromine K-edge EXAFS studies of bromide binding to bromoperoxidase from Ascophyllum nodosum. (5/459)

Bromine K-edge EXAFS studies have been carried out for bromide/peroxidase samples in Tris buffer at pH 8. The results are compared with those of aqueous (Tris-buffered) bromide and vanadium model compounds containing Br-V, Br-C(aliphatic) and Br-C(aromatic) bonds. It is found that bromide does not coordinate to the vanadium centre. Rather, bromine binds covalently to carbon. A possible candidate is active site serine.  (+info)

L-Glutamic acid gamma-monohydroxamate. A potentiator of vanadium-evoked glucose metabolism in vitro and in vivo. (6/459)

We report that the vanadium ligand L-Glu(gamma)HXM potentiates the capacity of free vanadium ions to activate glucose uptake and glucose metabolism in rat adipocytes in vitro (by 4-5-fold) and to lower blood glucose levels in hyperglycemic rats in vivo (by 5-7-fold). A molar ratio of two L-Glu(gamma)HXM molecules to one vanadium ion was most effective. Unlike other vanadium ligands that potentiate the insulinomimetic actions of vanadium, L-Glu(gamma)HXM partially activated lipogenesis in rat adipocytes in the absence of exogenous vanadium. This effect was not manifested by D-Glu(gamma)HXM. At 10-20 microM L-Glu(gamma)HXM, lipogenesis was activated 9-21%. This effect was approximately 9-fold higher (140 +/- 15% of maximal insulin response) in adipocytes derived from rats that had been treated with vanadium for several days. Titration of vanadium(IV) with L-Glu(gamma)HXM led to a rapid decrease in the absorbance of vanadium(IV) at 765 nm, and (51)V NMR spectroscopy revealed that the chemical shift of vanadium(IV) at -490 ppm disappeared with the appearance of a signal characteristic to vanadium(V) (-530 ppm) upon adding one equivalent of L-Glu(gamma)HXM. In summary, L-Glu(gamma)HXM is highly active in potentiating vanadium-activated glucose metabolism in vitro and in vivo and facilitating glucose metabolism in rat adipocytes in the absence of exogenous vanadium probably through conversion of trace intracellular vanadium into an active insulinomimetic compound. We propose that the active species is either a 1:1 or 2:1 L-Glu(gamma)HXM vanadium complex in which the endogenous vanadium(IV) has been altered to vanadium(V). Finally we demonstrate that L-Glu(gamma)HXM- and L-Glu(gamma)HXM.vanadium-evoked lipogenesis is arrested by wortmannin and that activation of glucose uptake in rat adipocytes is because of enhanced translocation of GLUT4 from low density microsomes to the plasma membrane.  (+info)

Nuclear magnetic resonance spectrum of living tunicate blood cells and the structure of the native vanadium chromogen. (7/459)

The 1-H nuclear magnetic resonance spectrum of living tunicate blood cells was examined in an attempt to develop a biophysical assay for the native vanadium chromogen. The living cell spectrum was found to exhibit a broad 21 ppm downfield Gaussian signal which, however, disappears immediately upon cell disruption. Examination of the properties of this extremely low field signal revealed that it corresponds to a labile vanadium (III) aquo complex contained in the cell vacuoles, that vanadium(III) concentrations are rigidly regulated within these vacuoles, and that artifact formation does occur in the hemolysate. The living cell spectrum also indicates the number of ligand-bound vanadium(III) coordination sites in the native blood pigment. Results are discussed relation to the possible functions of the vandium chromogen.  (+info)

Activation of the EGF receptor signaling pathway in human airway epithelial cells exposed to metals. (8/459)

We have previously shown that exposure to combustion-derived metals rapidly (within 20 min) activated mitogen-activated protein kinases (MAPK), including extracellular signal-regulated kinase (ERK), in the human bronchial epithelial cell line BEAS. To study the mechanisms responsible for metal-induced activation of ERK, we examined the effect of noncytotoxic exposures to As, Cu, V, or Zn on the kinases upstream of ERK in the epidermal growth factor (EGF) receptor signaling pathway. Western blotting using phospho-specific ERK1/2 antibody demonstrated the selective MEK1/2 inhibitor PD-98059 blocked metal-induced phosphorylation of ERK1/2. Meanwhile, Western blotting using a phospho-specific MEK1/2 antibody showed that these metals induce a rapid phosphorylation of MEK1/2. Kinase activity assays confirmed the activation of MEK1/2 by metal treatment. Immunoprecipitation studies demonstrated that As, Cu, V, or Zn induces EGF receptor phosphorylation. Furthermore, the EGF receptor-specific tyrosine kinase inhibitor (PD-153035) significantly blocked the phosphorylation of MEK1/2 initiated by metals. Interestingly, we observed low levels of Raf-1 activity that were not increased by metal exposure in these cells through kinase activity assay. Finally, transfection assays showed that MEK1/2 inhibition could inhibit trans-activation of Elk1, a transcription factor in the ERK pathway, in BEAS cells exposed to metals. Together, these data demonstrate that As, Cu, V, and Zn can activate the EGF receptor signaling pathway in BEAS cells and suggest that this mechanism may be involved in pulmonary responses to metal inhalation.  (+info)