The Escherichia coli Ada protein can interact with two distinct determinants in the sigma70 subunit of RNA polymerase according to promoter architecture: identification of the target of Ada activation at the alkA promoter. (73/75781)

The methylated form of the Ada protein (meAda) activates transcription from the Escherichia coli ada, aidB, and alkA promoters with different mechanisms. In this study we identify amino acid substitutions in region 4 of the RNA polymerase subunit sigma70 that affect Ada-activated transcription at alkA. Substitution to alanine of residues K593, K597, and R603 in sigma70 region 4 results in decreased Ada-dependent binding of RNA polymerase to the alkA promoter in vitro and impairs alkA transcription both in vivo and in vitro, suggesting that these residues define a determinant for meAda-sigma70 interaction. In a previous study (P. Landini, J. A. Bown, M. R. Volkert, and S. J. W. Busby, J. Biol. Chem. 273:13307-13312, 1998), we showed that a set of negatively charged amino acids in sigma70 region 4 is involved in meAda-sigma70 interaction at the ada and aidB promoters. However, the alanine substitutions of positively charged residues K593, K597, and R603 do not affect meAda-dependent transcription at ada and aidB. Unlike the sigma70 amino acids involved in the interaction with meAda at the ada and aidB promoters, K593, K597, and R603 are not conserved in sigmaS, an alternative sigma subunit of RNA polymerase mainly expressed during the stationary phase of growth. While meAda is able to promote transcription by the sigmaS form of RNA polymerase (EsigmaS) at ada and aidB, it fails to do so at alkA. We propose that meAda can activate transcription at different promoters by contacting distinct determinants in sigma70 region 4 in a manner dependent on the location of the Ada binding site.  (+info)

The Bradyrhizobium japonicum nolA gene encodes three functionally distinct proteins. (74/75781)

Examination of nolA revealed that NolA can be uniquely translated from three ATG start codons. Translation from the first ATG (ATG1) predicts a protein (NolA1) having an N-terminal, helix-turn-helix DNA-binding motif similar to the DNA-binding domains of the MerR-type regulatory proteins. Translation from ATG2 and ATG3 would give the N-terminally truncated proteins NolA2 and NolA3, respectively, lacking the DNA-binding domain. Consistent with this, immunoblot analyses of Bradyrhizobium japonicum extracts with a polyclonal antiserum to NolA revealed three distinct polypeptides whose molecular weights were consistent with translation of nolA from the three ATG initiation sites. Site-directed mutagenesis was used to produce derivatives of nolA in which ATG start sites were sequentially deleted. Immunoblots revealed a corresponding absence of the polypeptide whose ATG start site was removed. Translational fusions of the nolA mutants to a promoterless lacZ yielded functional fusion proteins in both Escherichia coli and B. japonicum. Expression of NolA is inducible upon addition of extracts from 5-day-old etiolated soybean seedlings but is not inducible by genistein, a known inducer of the B. japonicum nod genes. The expression of both NolA2 and NolA3 requires the presence of NolA1. NolA1 or NolA3 is required for the genotype-specific nodulation of soybean genotype PI 377578.  (+info)

Inhibition of the rous sarcoma virus long terminal repeat-driven transcription by in vitro methylation: different sensitivity in permissive chicken cells versus mammalian cells. (75/75781)

Rous sarcoma virus (RSV) enhancer sequences in the long terminal repeat (LTR) have previously been shown to be sensitive to CpG methylation. We report further that the high density methylation of the RSV LTR-driven chloramphenicol acetyltransferase reporter is needed for full transcriptional inhibition in chicken embryo fibroblasts and for suppression of tumorigenicity of the RSV proviral DNA in chickens. In nonpermissive mammalian cells, however, the low density methylation is sufficient for full inhibition. The time course of inhibition differs strikingly in avian and mammalian cells: although immediately inhibited in mammalian cells, the methylated RSV LTR-driven reporter is fully inhibited with a significant delay after transfection in avian cells. Moreover, transcriptional inhibition can be overridden by transfection with a high dose of the methylated reporter plasmid in chicken cells but not in hamster cells. The LTR, v-src, LTR proviral DNA is easily capable of inducing sarcomas in chickens but not in hamsters. In contrast, Moloney murine leukemia virus LTR-driven v-src induces sarcomas in hamsters with high incidence. Therefore, the repression of integrated RSV proviruses in rodent cells is directed against the LTR.  (+info)

Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation? (76/75781)

Brain-derived neurotrophic factor (BDNF) has potent effects on neuronal survival and plasticity during development and after injury. In the nervous system, neurons are considered the major cellular source of BDNF. We demonstrate here that in addition, activated human T cells, B cells, and monocytes secrete bioactive BDNF in vitro. Notably, in T helper (Th)1- and Th2-type CD4(+) T cell lines specific for myelin autoantigens such as myelin basic protein or myelin oligodendrocyte glycoprotein, BDNF production is increased upon antigen stimulation. The BDNF secreted by immune cells is bioactive, as it supports neuronal survival in vitro. Using anti-BDNF monoclonal antibody and polyclonal antiserum, BDNF immunoreactivity is demonstrable in inflammatory infiltrates in the brain of patients with acute disseminated encephalitis and multiple sclerosis. The results raise the possibility that in the nervous system, inflammatory infiltrates have a neuroprotective effect, which may limit the success of nonselective immunotherapies.  (+info)

Cell-free immunology: construction and in vitro expression of a PCR-based library encoding a single-chain antibody repertoire. (77/75781)

A novel cloning-independent strategy has been developed to generate a combinatorial library of PCR fragments encoding a murine single-chain antibody repertoire and express it directly in a cell-free system. The new approach provides an effective alternative to the techniques involving in vivo procedures of preparation and handling large libraries of antibodies. The possible use of the described strategy in the ribosome display is discussed.  (+info)

Disruption of substrate binding site in E. coli RNA polymerase by lethal alanine substitutions in carboxy terminal domain of the beta subunit. (78/75781)

Alanine substitution of four amino acids in two evolutionarily conserved motifs, PSRM and RFGEMIE, near the carboxy terminus of the beta subunit of E. coli RNA polymerase results in a dramatic loss of the enzyme's affinity to substrates with no apparent effect on the maximal rate of the enzymatic reaction or on binding to promoters. The magnitude and selectivity of the effect suggest that the mutations disrupt the substrate binding site of the active center.  (+info)

Balanced regulation of expression of the gene for cytochrome cM and that of genes for plastocyanin and cytochrome c6 in Synechocystis. (79/75781)

The cytM gene for cytochrome cM was previously found in Synechocystis sp. PCC 6803. Northern blotting analysis revealed that the cytM gene was scarcely expressed under normal growth conditions but its expression was enhanced when cells were exposed to low temperature or high-intensity light. By contrast, the expression of the genes for cytochrome c6 and plastocyanin was suppressed at low temperature or under high-intensity light. These observations suggest that plastocyanin and/or cytochrome c6, which are dominant under non-stressed conditions, are replaced by cytochrome cM under the stress conditions.  (+info)

Regulation of interleukin-8 expression by reduced oxygen pressure in human glioblastoma. (80/75781)

Oxygen deprivation is an important biological feature of tumor growth. We previously showed that in glioma, anoxia increases expression of IL-8, a chemokine and angiogenic factor. Here, we analysed for the first time the biochemical mechanisms inducing the IL-8 gene upon anoxia in glioma cells, and showed that they differ from those inducing the VEGF gene. Both genes are induced in biologically and genetically heterogenous glioblastoma cell lines (LN-229, LN-Z308, U87MG, T98G), whereas, in gliosarcoma cells (D247MG), only the VEGF gene is induced. The kinetics of IL-8 and VEGF mRNA inductions differ in these cells and reoxygenation experiments showed that the induction is due to the anoxic stress per se. Furthermore, in LN-229 and LN-Z308 cell lines actinomycin D, DRB and nuclear run-on experiments showed that anoxia stimulates increased transcription of both genes. Electromobility shift assays show increased protein binding to the AP-1 site on the IL-8 promoter following anoxia treatment. Finally, in situ hybridization on glioblastoma sections shows that the in vivo expression patterns of IL-8 and VEGF genes overlap, but are not identical. Since intratumoral augmentation of IL-8 and VEGF secretion, following microenvironmental decreases in oxygen pressure, may promote angiogenesis, further definition of these pathways is essential to appropriately target them for antitumoral therapy.  (+info)