Deoxycytidine transport in the presence of a cytidine deaminase inhibitor and the transport of uracil in Escherichia coli B. (1/28)

Tetrahydrouridine, a cytidine deaminase inhibitor, prevents periplasmic degradation of deoxycytidine by Escherichia coli B. It does not inhibit deoxycytidine transport and therefore allows an accurate determination of deoxycytidine transport. Data obtained using tetrahydrouridine show that deoxycytidine is transported in E. coli B as the intact nucleoside by an active transport process, with a K-m of 6 times 10-minus 6 M. Cytidine and deoxyadenosine inhibit transport competitively, whereas guanosine has no effect on transport. Arsenate or KCN greatly reduces transport. In a mutant resistant to the nucleoside antibiotic, showdomycin, the active transport of deoxycytidine is lost, and residual slow uptake occurs by passive diffusion. Uracil is accumulated in E. coli B by an active transport process with a K-m of 5 times 10-minus 7 M.  (+info)

Human immunodeficiency virus type 1 induces 1-beta-D-arabinofuranosylcytosine resistance in human H9 cell line. (2/28)

We have found that chronically HIV-1(IIIB)-infected H9 cells showed 21-fold resistance to 1-beta-D-arabinofuranosylcytosine (ARA-C) compared with uninfected H9 cells. In the infected H9 cells, a 37% increase of dCTP pool and a 34% increase of dATP were observed, and no alteration of dTTP and dGTP was observed, compared with the uninfected H9 cells. A marked decrease of ARA-CTP generation was observed in the infected H9 cells after 3-h incubation with 0.1-10 microM ARA-C. The level of deoxycytidine kinase activity with ARA-C as substrate was similar in both the infected and the uninfected cells; however, a 37-fold increase of cytidine deaminase activity was observed in the infected H9 cells. These results indicate that the induction of cytidine deaminase activity by HIV-1(IIIB) infection conferred ARA-C resistance to H9 cells. This conclusion was supported by the observation that a marked reversal of ARA-C resistance in the infected H9 cells occurred after treatment with the inhibitor of cytidine deaminase, 3,4,5,6-tetrahydrouridine. The understanding of these cellular alterations in drug sensitivity may facilitate the development of effective therapeutic strategies against HIV-1-infected cells.  (+info)

5-Iododeoxyuridine increases the efficacy of the radioimmunotherapy of human tumors growing in nude mice. (3/28)

Recently, there has been much interest in the use of radionuclide conjugated monoclonal antibodies for the treatment of human malignancies. One way to potentially maximize the therapeutic effectiveness of radioimmunotherapy would be to sensitize tumor cells to the radiation dose delivered by the antibody. Since radioimmunotherapy can potentially treat disseminated disease, including micrometastasis, we chose to study a halogenated pyrimidine radiosensitizer, a class of compounds that affect nonhypoxic cells. 5-Iododeoxyuridine, administered with pyrimidine metabolism modulators, increased the therapeutic effectiveness of radioimmunotherapy, resulting in individual cures of human tumors growing in BALB/c nu/nu (nude) mice. 5-Iododeoxyuridine was administered with N-(phosphonacetyl)-L-aspartic acid and 5-fluoro-deoxycytidine plus tetrahydrouridine. This drug treatment was combined with radioimmunotherapy using 131I conjugated to a monoclonal antibody, Mc5. Mc5 binds to a mucin component of the human milk fat globule. This antigen is expressed on the surface of MX-1 cells, the transplantable human tumor used in this study. Tumor-bearing mice treated with both the drug protocol and 131I-Mc5 (540 microCi, 10 microCi/micrograms) showed a regression in average tumor volume. The average tumor volume was reduced below the initial size at treatment for 50 days; two of five cures were obtained. Neither cures nor regressions were observed with either the drug or antibody treatments alone. Our results indicate the potential for increasing the therapeutic effectiveness of radioimmunotherapy of human solid tumors with halogenated pyrimidines.  (+info)

Relatively small increases in the steady-state levels of nucleobase deamination products in DNA from human TK6 cells exposed to toxic levels of nitric oxide. (4/28)

Nitric oxide (NO) is a physiologically important molecule that has been implicated in the pathophysiology of diseases associated with chronic inflammation, such as cancer. While the complicated chemistry of NO-mediated genotoxicity has been extensively study in vitro, neither the spectrum of DNA lesions nor their consequences in vivo have been rigorously defined. We have approached this problem by exposing human TK6 lymphoblastoid cells to controlled steady-state concentrations of 1.75 or 0.65 microM NO along with 186 microM O2 in a recently developed reactor that avoids the anomalous gas-phase chemistry of NO and approximates the conditions at sites of inflammation in tissues. The resulting spectrum of nucleobase deamination products was defined using a recently developed liquid chromatography/mass spectrometry (LC/MS) method, and the results were correlated with cytotoxicity and apoptosis. A series of control experiments revealed the necessity of using dC and dA deaminase inhibitors to avoid adventitious formation of 2'-deoxyuridine (dU) and 2'-deoxyinosine (dI), respectively, during DNA isolation and processing. Exposure of TK6 cells to 1.75 microM NO and 186 microM O2 for 12 h (1260 microM x min dose) resulted in 32% loss of cell viability measured immediately after exposure and 87% cytotoxicity after a 24 h recovery period. The same exposure resulted in 3.5-, 3.8-, and 4.1-fold increases in dX, dI, and dU, respectively, to reach the following levels: dX, 7 (+/- 1) per 10(6) nt; dI, 25 (+/- 2.1) per 10(6) nt; and dU, 40 (+/- 3.8) per 10(6) nt. dO was not detected above the limit of detection of 6 lesions per 10(7) nt in 50 microg of DNA. A 12 h exposure to 0.65 microM NO and 190 microM O2 (468 microM x min dose) caused 1.7-, 1.8-, and 2.0-fold increases in dX, dI, and dU, respectively, accompanied by a approximately 15% (+/- 3.6) reduction in cell viability immediately after exposure. Again, dO was not detected. These results reveal modest increases in the steady-state levels of DNA deamination products in cells exposed to relatively cytotoxic levels of NO. This could result from limited nitrosative chemistry in nuclear DNA in cells exposed to NO or high levels of formation balanced by rapid repair of nucleobase deamination lesions in DNA.  (+info)

Kinase and deaminase activity in a variety of subcutaneous mouse tumors. (5/28)

Extracts of solid mouse tumors were examined for deoxycytidine kinase and deaminase activities. 1beta-D-Arabinofuranosylcytosine nucleotide was formed at a rate of 45 nmoles/hr by Glioma 26/57 and only 14 nmoles/hr by Ridgway osteogenic sarcoma. Deaminase activity was highest in Lewis lung (114 nmoles of 1-Beta-D-arabinofurano-syluridine formed per hr) and in CaD2 (104 nmoles of u-beta-D-arabinofuranosyluridine formed per hr). Deaminase activity in tumor extracts is sensitive to freezing, while deaminase activity in monkey serum is not. It was observed that kinase activity varies by as much as 50% in different cell lines of the same tumor. In the presence of tetrahydrouridine, kinase activity was significantly increased in most of the tumors studied.  (+info)

Plasma pharmacokinetics and oral bioavailability of 3,4,5,6-tetrahydrouridine, a cytidine deaminase inhibitor, in mice. (6/28)

Cytidine analogues such as cytosine arabinoside, gemcitabine, decitabine, 5-azacytidine, 5-fluoro-2'-deoxycytidine and 5-chloro-2'-deoxycytidine undergo rapid catabolism by cytidine deaminase (CD). 3,4,5,6-tetrahydrouridine (THU) is a potent CD inhibitor that has been applied preclinically and clinically as a modulator of cytidine analogue metabolism. However, THU pharmacokinetics has not been fully characterized, which has impaired the optimal preclinical evaluation and clinical use of THU. Therefore, we characterized the THU pharmacokinetics and bioavailability in mice. Mice were dosed with THU iv (100 mg/kg) or po (30, 100, or 300 mg/kg). Plasma and urine THU concentrations were quantitated with a validated LC-MS/MS assay. Plasma pharmacokinetic parameters were calculated compartmentally and non-compartmentally. THU, at 100 mg/kg iv had a 73 min terminal half-life and produced plasma THU concentrations >1 microg/ml, the concentration shown to effectively block deamination, for 4 h. Clearance was 9.1 ml/min/kg, and the distribution volume was 0.95 l/kg. Renal excretion accounted for 36-55% of the THU dose. A three-compartment model fit the iv THU data best. THU, at 100 mg/kg po, produced a concentration versus time profile with a plateau of approximately 10 mug/ml from 0.5-3 h, followed by a decline with an 85 min half-life. The oral bioavailability of THU was approximately 20%. The 20% oral bioavailability of THU is sufficient to produce and sustain, for several hours, plasma concentrations that inhibit CD. This suggests the feasibility of using THU to decrease elimination and first-pass metabolism of cytidine analogues by CD. THU pharmacokinetics are now being evaluated in humans.  (+info)

Modulation of gemcitabine (2',2'-difluoro-2'-deoxycytidine) pharmacokinetics, metabolism, and bioavailability in mice by 3,4,5,6-tetrahydrouridine. (7/28)

 (+info)

Synthesis of deoxytetrahydrouridine. (8/28)

 (+info)