Pluronic polyols in human lymphocyte cell line cultures. (17/666)

Pluronic polyols markedly improved the growth of two human lymphocyte cell lines when added to the growth medium in concentrations of 0.05 to 0.1%. The results of the current studies suggest that, in addition to the protective effect of polyols against mechanical damage of mammalian cells in submerged cultures, the pluronic compounds may also, by lowering surface tension, facilitate transport of metabolites into cells and thus increase the growth rate.  (+info)

Inhibition of Streptococcus mutans NS adhesion to glass with and without a salivary conditioning film by biosurfactant- releasing Streptococcus mitis strains. (18/666)

The release of biosurfactants by adhering microorganisms as a defense mechanism against other colonizing strains on the same substratum surface has been described previously for probiotic bacteria in the urogenital tract, the intestines, and the oropharynx but not for microorganisms in the oral cavity. Two Streptococcus mitis strains (BA and BMS) released maximal amounts of biosurfactants when they were grown in the presence of sucrose and were harvested in the early stationary phase. The S. mitis biosurfactants reduced the surface tensions of aqueous solutions to about 30 to 40 mJ m(-2). Biochemical and physicochemical analyses revealed that the biosurfactants released were glycolipids. An acid-precipitated fraction was extremely surfactive and was identified as a rhamnolipidlike compound. In a parallel-plate flow chamber, the number of Streptococcus mutans NS cells adhering to glass with and without a salivary conditioning film in the presence of biosurfactant-releasing S. mitis BA and BMS (surface coverage, 1 to 4%) was significantly reduced compared with the number of S. mutans NS cells adhering to glass in the absence of S. mitis. S. mutans NS adhesion in the presence of non-biosurfactant-releasing S. mitis BA and BMS was not reduced at all. In addition, preadsorption of isolated S. mitis biosurfactants to glass drastically reduced the adhesion of S. mutans NS cells and the strength of their bonds to glass, as shown by the increased percentage of S. mutans NS cells detached by the passage of air bubbles through the flow chamber. Preadsorption of the acid-precipitated fraction inhibited S. mutans adhesion up to 80% in a dose-responsive manner. These observations indicate that S. mitis plays a protective role in the oral cavity and protects against colonization of saliva-coated surfaces by cariogenic S. mutans.  (+info)

Effect of pH on the interfacial tension of lipid bilayer membrane. (19/666)

The dependence of the interfacial tension of a lipid bilayer on the pH of the aqueous solution has been studied. A theoretical equation is derived to describe this dependence. Interfacial tension measurements of an egg phosphatidylcholine bilayer were carried out. The experimental results agreed with those derived from the theoretical equation obtained close to the isoelectric point within a range of three pH units. A maximum corresponding to the isoelectric point appears both in the theoretical equation and in the experimental data.  (+info)

An investigation of pulmonary surfactant physicochemical behavior under airway reopening conditions. (20/666)

Airway reopening mechanics depend on surfactant physicochemical properties. During reopening, the progression of a finger of air down an airway creates an interface that is continually expanding into the bulk fluid. Conventional surfactometers are not capable of evaluating physicochemical behavior under these conditions. To study these aspects, we investigated the pressure required to push a semi-infinite bubble of air down a fluid-filled cylindrical capillary of radius R. The ionic surfactant SDS and pulmonary surfactant analogs L-alpha-dipalmitoylphosphatidylcholine and Infasurf were investigated. We found that the nonequilibrium adsorption of surfactant can create a large nonequilibrium normal stress and a surface shear stress (Marangoni stress) that increase the bubble pressure. The nonphysiological surfactant SDS is capable of eliminating the normal stress and partially reducing the Marangoni stress. The main component of pulmonary surfactant, L-alpha-dipalmitoylphosphatidylcholine, is not capable of reducing either stress, demonstrating slow adsorption properties. The clinically relevant surfactant Infasurf is shown to have intermediate adsorption properties, such that the nonequilibrium normal stress is reduced but the Marangoni stress remains large. Infasurf's behavior suggests that an optimal surfactant solution will have sorption properties that are fast enough to reduce the reopening pressure that may damage airway wall epithelial cells but slow enough to maintain the Marangoni stress that enhances airway stability.  (+info)

Effect of recombinant SP-C surfactant in a porcine lavage model of acute lung injury. (21/666)

Synthetic surfactants allow examination of the effects of specific components of natural surfactant. To determine whether surfactant containing apoprotein C, dipalmitoyl-phosphatidylcholine, phosphatidylglycerol, and palmitic acid restores gas-exchanging function in acute lung injury (ALI), we administered such surfactant (in doses of 50 or 100 mg/kg and in volumes from 1 to 6 ml/kg) or phospholipid (PL) alone, by intratracheal instillation, to pigs with ALI induced by massive saline lavage. Animals ventilated with 100% O(2) and receiving 1, 2, 4, or 6 ml/kg of 50 mg/kg recombinant surfactant apoprotein C (rSP-C) surfactant or 2 ml/kg of 50 mg/kg PL (control) had mean arterial PO(2) values, 4 h after treatment, of 230, 332, 130, 142, or 86 Torr, respectively. Animals receiving 1, 2, or 4 ml/kg of 100 mg/kg rSP-C surfactant or 2 ml/kg of 100 mg/kg PL (control) had mean arterial PO(2) values of 197, 214, 148, or 88 Torr, respectively. Surfactant PL distribution was homogeneous. Hyaline membrane formation was reduced in treated animals. Thus, in this model of ALI, rSP-C with PL has the capacity to improve gas exchange and possibly modify lung injury.  (+info)

Fusion of vesicles with the air-water interface: the influence of polar head group, salt concentration, and vesicle size. (22/666)

Fusion of vesicles with the air-water interface and consequent monolayer formation has been studied as a function of temperature. Unilamellar vesicles of DMPC, DPPC, and DODAX (X=Cl(-), Br(-)) were injected into a subphase containing NaCl, and the surface pressure (tension) was recorded on a Langmuir Balance (Tensiometer) using the Wilhelmy plate (Ring) method. For the zwitterionic vesicles, plots of the initial surface pressure increase rate (surface tension decrease rate) as a function of temperature show a peak at the phase transition temperature (T(m)) of the vesicles, whereas for ionic ones they show a sharp rise. At high concentrations of NaCl, ionic DODA(Cl) vesicles seem to behave like zwitterionic ones, and the rate of fusion is higher at the T(m). The influence of size was studied comparing large DODA(Cl) vesicles with small sonicated ones, and no significant changes were found regarding the rate of fusion with the air-water interface.  (+info)

Direct determination of surface tension in the lung. (23/666)

We have used the spreading behavior of small drops of several fluorocarbon fluids and silicone oil on air-liquid interfaces to measure the surface tension of lungs in situ. The test fluids were calibrated in a surface balance at 37 degrees on monolayers of dipalmitoylphosphatidylcholine. At particular surface tensions characteristic of each fluid used, an increase in the tension of 1 mN/m or less caused the droplets to spread reversibly from a sphere to a lens shape. Using micropipettes we placed such droplets on the alveolar surfaces of excised rat lungs held at functional residual capacity and 37 degrees and found that the surface tension remained below 9 mN/m for at least 30 min. The surface tension-volume relationship was linear for tensions ranging from 9 to 20 mN/m.  (+info)

P. carinii induces selective alterations in component expression and biophysical activity of lung surfactant. (24/666)

Studies of Pneumocystis carinii pneumonia (PCP) suggest an important role for the surfactant system in the pathogenesis of the hypoxemic respiratory insufficiency associated with this infection. We hypothesized that PCP induces selective alterations in alveolar surfactant component expression and resultant biophysical properties. PCP was induced by intratracheal inoculation of 2 x 10(5) P. carinii organisms into C.B-17 scid/scid mice. Six weeks after inoculation, large (LA)- and small (SA)-aggregate surfactant fractions were prepared from bronchoalveolar lavage fluids and analyzed for expression of surfactant components and for biophysical activity. Total phospholipid content was significantly reduced in LA surfactant fractions from mice infected with PCP (53 +/- 15% of uninfected mice; P < 0.05). Quantitation of hydrophobic surfactant protein (SP) content demonstrated significant reductions of alveolar SP-B and SP-C protein levels in mice with PCP compared with those in uninfected mice (46 +/- 7 and 19 +/- 6%, respectively; P < 0.05 for both). The reductions in phospholipid, SP-B, and SP-C in LA fractions measured during PCP were associated with an increase in the minimum surface tension of LAs as measured by pulsating bubble surfactometer (13.1 +/- 1.1 vs. 5.4 +/- 1.8 mN/m; P < 0.05). In contrast to decreases in the hydrophobic SPs, SP-D content in the SA fraction was markedly increased (343 +/- 30% of control value; P < 0. 05) and SP-A levels in LA surfactant were maintained (93 +/- 26% of control value) during P. carinii infection. In all cases, the changes in SP content were reflected by commensurate changes in the levels of mRNA. We conclude that PCP induces selective alterations in surfactant component expression, including profound decreases in hydrophobic protein contents and resultant increases in surface tension. These changes, demonstrated in an immunologically relevant animal model, suggest that alterations in surfactant could contribute to the hypoxemic respiratory insufficiency observed in PCP.  (+info)