ApoB100 secretion from HepG2 cells is decreased by the ACAT inhibitor CI-1011: an effect associated with enhanced intracellular degradation of ApoB. (1/556)

The concept that hepatic cholesteryl ester (CE) mass and the rate of cholesterol esterification regulate hepatocyte assembly and secretion of apoB-containing lipoproteins remains controversial. The present study was carried out in HepG2 cells to correlate the rate of cholesterol esterification and CE mass with apoB secretion by CI-1011, an acyl CoA:cholesterol acyltransferase (ACAT) inhibitor that is known to decrease apoB secretion, in vivo, in miniature pigs. HepG2 cells were incubated with CI-1011 (10 nmol/L, 1 micromol/L, and 10 micromol/L) for 24 hours. ApoB secretion into media was decreased by 25%, 27%, and 43%, respectively (P<0.0012). CI-1011 (10 micromol/L) inhibited HepG2 cell ACAT activity by 79% (P<0.002) and cellular CE mass by 32% (P<0.05). In contrast, another ACAT inhibitor, DuP 128 (10 micromol/L), decreased cellular ACAT activity and CE mass by 85% (P<0.002) and 42% (P=0.01), respectively, but had no effect on apoB secretion into media. To characterize the reduction in apoB secretion by CI-1011, pulse-chase experiments were performed and analyzed by multicompartmental modelling using SAAM II. CI-1011 did not affect the synthesis of apoB or albumin. However, apoB secretion into the media was decreased by 42% (P=0.019). Intracellular apoB degradation increased proportionately (P=0.019). The secretion of albumin and cellular reuptake of labeled lipoproteins were unchanged. CI-1011 and DuP 128 did not affect apoB mRNA concentrations. These results show that CI-1011 decreases apoB secretion by a mechanism that involves an enhanced intracellular degradation of apoB. This study demonstrates that ACAT inhibitors can exert differential effects on apoB secretion from HepG2 cells that do not reflect their efficacy in inhibiting cholesterol esterification.  (+info)

Human acyl-CoA:cholesterol acyltransferase-1 (ACAT-1) gene organization and evidence that the 4.3-kilobase ACAT-1 mRNA is produced from two different chromosomes. (2/556)

Acyl-CoA:cholesterol acyltransferase (ACAT) plays important roles in cellular cholesterol homeostasis. Four human ACAT-1 mRNAs (7.0, 4.3, 3.6, and 2.8 kilobases (kb)) share the same short 5'-untranslated region (exon 1) and coding sequence (exons 2-15). The 4.3-kb mRNA contains an additional 5'-untranslated region (1289 nucleotides in length; exons Xa and Xb) immediately upstream from the exon 1 sequence. One ACAT-1 genomic DNA insert covers exons 1-16 and a promoter (the P1 promoter). A separate insert covers exon Xa (1277 base pairs) and a different promoter (the P7 promoter). Gene mapping shows that exons 1-16 and the P1 promoter sequences are located in chromosome 1, while exon Xa and the P7 promoter sequence are located in chromosome 7. RNase protection assays demonstrate three different protected fragments, corresponding to the 4.3-kb mRNA and the two other mRNAs transcribed from the two promoters. These results are consistent with the interpretation that the 4.3-kb mRNA is produced from two different chromosomes, by a novel RNA recombination mechanism involving trans-splicing of two discontinuous precursor RNAs.  (+info)

Effects of NTE-122, a novel acyl-CoA:cholesterol acyltransferase inhibitor, on cholesterol esterification and secretions of apolipoprotein B-containing lipoprotein and bile acids in HepG2. (3/556)

We studied the effect of NTE-122 (trans-1,4-bis[[1-cyclohexyl-3-(4-dimethylamino phenyl) ureido]methyl]cyclohexane), a novel acyl-CoA:cholesterol acyltransferase (ACAT) inhibitor, on intracellular cholesterol esterification and the secretion of apolipoprotein B100 (apoB)-containing lipoprotein and bile acids in the human hepatoma cell line HepG2. NTE-122 markably inhibited [3H]oleate incorporation into cholesteryl esters in HepG2 cells incubated with 5 microg/ml 25-hydroxycholesterol as a stimulus for ACAT (IC50=6.0 nM). On the other hand, NTE-122 did not affect [3H]oleate incorporation into triglycerides and phospholipids and [14C]acetate incorporation into cholesterol. The stimulation of ACAT by 25-hydroxycholesterol caused significant increases in the secretion of radiolabeled cholesteryl esters, radiolabeled triglycerides and apoB mass. NTE-122 pronouncedly inhibited the secretion of radiolabeled cholesteryl esters in proportion to the inhibition of cellular cholesterol esterification, and it significantly reduced the secretion of radiolabeled triglycerides and apoB mass in HepG2 cells incubated with 25-hydroxycholesterol. Furthermore, NTE-122 increased the secretion of bile acids synthesized from [14C]-cholesterol. These results suggest that NTE-122 is capable of exhibiting anti-hyperlipidemic effects by reducing both the cholesterol content and the amount of secreted very low-density lipoprotein and enhancing the excretion of bile acid from the liver.  (+info)

Effects of NTE-122, a novel acyl-CoA:cholesterol acyltransferase inhibitor, on cholesterol esterification and high-density lipoprotein-induced cholesterol efflux in macrophages. (4/556)

We investigated the effects of a novel acyl-CoA:cholesterol acyltransferase (ACAT) inhibitor, NTE-122 (trans-1,4-bis[[1-cyclohexyl-3-(4-dimethylamino phenyl)ureido]methyl]cyclohexane), on ACAT activities in macrophages originating from several species and high-density lipoprotein (HDL)-induced cholesterol efflux in phorbol 12-myristate 13-acetate (PMA)-treated THP-1 cells. NTE-122 inhibited cell-free ACAT activities in human PMA-treated THP-1 cells and mouse J774.1 cells with IC50 values of 0.88 and 360 nM, respectively. NTE-122 competively inhibited the ACAT activity in PMA-treated THP-1 cells. NTE-122 also inhibited cellular ACAT activities in PMA-treated THP-1 cells, rat peritoneal macrophages and J774.1 cells with IC50 values of 3.5, 84 and 6800 nM, respectively. Furthermore, NTE-122 prevented cholesterol accumulation in PMA-treated THP-1 cells incubated with acetylated low density lipoprotein, simultaneously with HDL, while it caused accumulation of a significant amount of free cholesterol in the absence and even in the presence of HDL. NTE-122 also enhanced HDL-induced cholesterol efflux from established foam cells converted from PMA-treated THP-1 cells. These results suggest that NTE-122, capable of inhibiting macrophage ACAT activity in humans more strongly than those in the other species, exhibits anti-atherogenic effects by preventing the foam cell formation and enhancing the foam cell regression in humans.  (+info)

Modification of type III VLDL, their remnants, and VLDL from ApoE-knockout mice by p-hydroxyphenylacetaldehyde, a product of myeloperoxidase activity, causes marked cholesteryl ester accumulation in macrophages. (5/556)

Very low density lipoproteins (VLDLs) from apolipoprotein (apo) E2/E2 subjects with type III hyperlipoproteinemia, VLDL remnants, and VLDL from apoE-knockout (EKO) mice are taken up poorly by macrophages. The present study examined whether VLDL modification by the reactive aldehyde p-hydroxyphenylacetaldehyde (pHA) enhances cholesteryl ester (CE) accumulation by J774A.1 macrophages. pHA is the major product derived from the oxidation of L-tyrosine by myeloperoxidase and is a component of human atherosclerotic lesions. Incubation of J774A.1 cells with native type III VLDL, their remnants, and EKO-VLDL increased cellular CE by only 3-, 5-, and 5-fold, respectively, compared with controls. In striking contrast, cells exposed to VLDL modified by purified pHA (pHA-VLDL) exhibited marked increases in cellular CE of 38-, 47-, and 35-fold, respectively (P95%, CE accumulation induced by copper-oxidized VLDL. These results demonstrate a novel mechanism for the conversion of type III VLDLs, their remnants, and EKO-VLDL into atherogenic particles and suggest that macrophage uptake of pHA-VLDL (1) requires catalytically active lipoprotein lipase, (2) involves acyl coenzyme A:cholesterol acyltransferase-mediated cholesterol esterification, and (3) involves pathways distinct from the SR-A.  (+info)

Plasma and hepatic cholesterol and hepatic activities of 3-hydroxy-3-methyl-glutaryl-CoA reductase and acyl CoA: cholesterol transferase are lower in rats fed citrus peel extract or a mixture of citrus bioflavonoids. (6/556)

The cholesterol-lowering effects of tangerine peel extract and a mixture of two citrus flavonoids were tested. Male rats were fed a 1 g/100 g high-cholesterol diet for 42 d with supplements of either tangerine-peel extract or a mixture of naringin and hesperidin (0.5 g/100 g) to study the effects of plasma and hepatic lipids, hepatic enzyme activities, and the excretion of fecal neutral sterols. Both the tangerine-peel extract and mixture of two flavonoids significantly lowered the levels (mean +/- SE) of plasma (2.44 +/- 0. 59 and 2.42 +/- 0.31 mmol/L, vs. 3.80 +/- 0.28 mmol/L, P < 0.05), hepatic cholesterol (0.143 +/- 0.017 and 0.131 +/- 0.010 mmol/g vs. 0.181 +/- 0.003 mmol/g, P < 0.05), and hepatic triglycerides (0.069 +/- 0.007 and 0.075 +/- 0.006 mmol/g vs. 0.095 +/- 0.002 mmol/g, P < 0.05) compared to those of the control. The 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase (1565.0 +/- 106. 0 pmol. min-1. mg protein-1 and 1783.0 +/- 282 pmol. min-1. mg protein-1 vs. 2487.0 +/- 210.0 pmol. min-1. mg protein-1, P < 0.05) and acyl CoA: cholesterol O-acyltransferase (ACAT) activities (548.0 +/- 65.0 and 615.0 +/- 80.0 pmol. min-1. mg protein-1 vs. 806.0 +/- 105.0 pmol. min-1. mg protein-1, P < 0.05) were significantly lower in the experimental groups than in the control. These supplements also substantially reduced the excretion of fecal neutral sterols compared to the control (211.1 +/- 26.7 and 208.2 +/- 31.6 mg/d vs. 521.9 +/- 53.9 mg/d). The inhibition of HMG-CoA reductase and ACAT activities resulting from the supplementation of either tangerine-peel extract or a combination of its bioflavonoids could account for the decrease in fecal neutral sterol that appears to compensate for the decreased cholesterol biosynthesis in the liver.  (+info)

A rapid calcium precipitation method of recovering large amounts of highly pure hepatocyte rough endoplasmic reticulum. (7/556)

We sought a rapid and non-ultracentrifugal method of recovering large amounts of highly pure rough endoplasmic reticulum (RER) membranes from livers. By substantially modifying a 20-year-old calcium precipitation technique, we obtained a RER fraction from rat liver and established its high degree of purity by quantitating classic membrane markers for different subcellular organelles. This RER fraction is highly enriched in four known proteins (or enzyme activities) required for lipoprotein assembly: apolipoprotein B, microsomal triglyceride transfer protein, acyl CoA:diacylglycerol acyltransferase, and acyl CoA:cholesterol acyltransferase, when compared to two classical RER markers, RNA and glucose-6-phosphatase. From one 10-12 g rat liver, we recover ten to twelve RER pellets of 1.5-1.6 cm in diameter containing approximately 110-125 mg of total protein, about half of which is sodium carbonate-releasable. By electron microscopy, these large RER pellets from rat livers are homogeneously comprised largely of non-vesiculated short strips of ribosome-rich membranes. This novel technique for isolating RER membranes from liver may provide a useful tool for future studies on the assembly of apolipoprotein B-containing lipoproteins as well as for research focused on mechanisms of secretory and membrane protein translation, translocation, and folding.  (+info)

Inhibition of ACAT by avasimibe decreases both VLDL and LDL apolipoprotein B production in miniature pigs. (8/556)

An orally bioavailable acyl coenzyme A:cholesterol acyltransferase (ACAT) inhibitor, avasimibe (CI-1011), was used to test the hypothesis that inhibition of cholesterol esterification, in vivo, would reduce hepatic very low density (VLDL) apolipoprotein (apo) B secretion into plasma. ApoB kinetic studies were carried out in 10 control miniature pigs, and in 10 animals treated with avasimibe (10 mg/kg/d, n = 6; 25 mg/kg/d, n = 4). Pigs were fed a diet containing fat (34% of calories) and cholesterol (400 mg/d; 0.1%). Avasimibe decreased the plasma concentrations of total triglyceride, VLDL triglyceride, and VLDL cholesterol by 31;-40% 39-48%, and 31;-35%, respectively. Significant reductions in plasma total cholesterol (35%) and low density lipoprotein (LDL) cholesterol (51%) concentrations were observed only with high dose avasimibe. Autologous 131I-labeled VLDL, 125I-labeled LDL, and [3H]leucine were injected simultaneously into each pig and apoB kinetic data were analyzed using multicompartmental analysis (SAAM II). Avasimibe decreased the VLDL apoB pool size by 40;-43% and the hepatic secretion rate of VLDL apoB by 38;-41%, but did not alter its fractional catabolism. Avasimibe decreased the LDL apoB pool size by 13;-57%, largely due to a dose-dependent 25;-63% in the LDL apoB production rate. Hepatic LDL receptor mRNA abundances were unchanged, consistent with a marginal decrease in LDL apoB FCRs. Hepatic ACAT activity was decreased by 51% (P = 0.050) and 68% (P = 0.087) by low and high dose avasimibe, respectively. The decrease in total apoB secretion correlated with the decrease in hepatic ACAT activity (r = 0.495; P = 0.026). We conclude that inhibition of hepatic ACAT by avasimibe reduces both plasma VLDL and LDL apoB concentrations, primarily by decreasing apoB secretion.  (+info)