Genetic engineering of drought resistant potato plants by introduction of the trehalose-6-phosphate synthase (TPS1) gene from Saccharomyces cerevisiae. (73/1525)

In yeast, trehalose-6-phosphate synthase is a key enzyme for trehalose biosynthesis, encoded by the structural gene TPS1. Trehalose affects sugar metabolism as well as osmoprotection against several environmental stresses, such as heat and desiccation. The TPS1 gene of Saccharomyces cerevisiae was engineered under the control of the CaMV 35S promoter for constitutive expression in transgenic potato plants by Ti-plasmid of Agrobacterium-mediated transformation. The resulting TPS1 transgenic potato plants exhibited various morphological phenotypes in culture tubes, ranging from normal to severely retarded growth, including dwarfish growth, yellowish lancet-shaped leaves, and aberrant root development. However, the plants recovered from these negative growth effects when grown in a soil mixture. The TPS1 transgenic potato plants showed significantly increased drought resistance. These results suggest that the production of trehalose not only affects plant development but also improves drought tolerance.  (+info)

Effects of graded levels of potato by-products in barley- and corn-based beef feedlot diets: I. Feedlot performance, carcass traits, meat composition, and appearance. (74/1525)

To measure effects of diet on feedlot performance, carcass characteristics, and beef appearance, 144 crossbred beef steers (333+/-.44 kg) were allotted within weight block (3) to a randomized complete block design with a 2 x 3 factorial arrangement of dietary treatments. Main effects were grain (barley or corn) and level of potato by-product (PB) (0, 10, or 20% of diet DM). Steers were fed diets containing 83% concentrate (grain plus PB), 10% supplement, and 7% alfalfa on a DM basis for an average of 130 d. Level of PB quadratically affected (P < .10) DM intake and gain such that steers fed 10% PB ate more and gained faster. Corn-fed steers were more (P < .05) efficient (5.8 vs 6.3 kg DM/kg gain) and had more (P < .05) kidney, pelvic, and heart fat (2.2 vs 2.0%) than barley-fed steers. A grain x PB interaction was detected (P < .10) for marbling score, which was minimized in steers fed barley diets (small 0) but maximized in those fed corn diets (small 30) at 10% PB. Diet did not affect beef firmness or beef color score. Barley-fed beef had whiter fat (P < .05) than corn-fed beef (2.6 vs 2.9 on a 1 to 7 scale); however, fat luster score was not affected by diet. Small differences were noted in fatty acid profile, purge, drip loss, and muscle pH. No differences were noted in color measurements due to dietary treatment over 7 d of retail shelf life. Overall, differences were small and probably not biologically important. These results indicate that these diets had minimal effects on beef appearance and carcass characteristics, meat composition, and water retention properties.  (+info)

Effects of graded levels of potato by-products in barley- and corn-based beef feedlot diets: II. Palatability. (75/1525)

The objective of this study was to evaluate the effects of barley- or corn-based diets containing 0, 10, or 20% potato by-product (DM basis) on Warner-Bratzler shear force and palatability of beef. One hundred forty-four crossbred beef steers (333+/-.44 kg) were allotted within weight block (3) to a randomized complete block design with a 2 x 3 factorial arrangement of dietary treatments. Main effects were grain (barley or corn) and level of potato by-product (0, 10, or 20% of diet DM). There were a total of 18 pens with eight steers per pen and three pens per treatment. Steers were fed diets containing 83% concentrate (grain plus potato by-product), 10% supplement, and 7% alfalfa (DM basis) for an average of 130 d. Longissimus muscle cuts were used for Warner-Bratzler shear force determination (four steers per pen) and evaluation (two steers per pen) by a 10-member trained laboratory panel, a professional flavor/texture profile panel, and by consumer panels. Diet did not affect (P > .10) Warner-Bratzler shear force or trained laboratory panel tenderness, juiciness, and flavor intensity scores. Flavor/texture profile panel scores indicated feeding a corn-based diet as opposed to barley-based diet produced a more appropriate well-balanced and well-blended beef flavor and texture. However, the magnitudes of the differences were relatively small, and flavor and texture amplitude ratings for both barley- and corn-fed beef were well above average. Beef from steers fed 10 or 20% potato by-product had lower (P < .05) incidences of inappropriate aromatics and aftertastes, which may have a slightly beneficial effect on beef flavor, but flavor amplitude was not affected (P > .05) by level of potato. Moreover, consumer panel overall acceptability scores were not affected by diet. Thus, feedlot diets containing corn or barley with or without potato by-product should result in palatable beef products.  (+info)

Cholinesterase inhibition by potato glycoalkaloids slows mivacurium metabolism. (76/1525)

BACKGROUND: The duration of action for many pharmaceutical agents is dependent on their breakdown by endogenous hydrolytic enzymes. Dietary factors that interact with these enzyme systems may alter drug efficacy and time course. Cholinesterases such as acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) hydrolyze and inactivate several anesthetic drugs, including cocaine, heroin, esmolol, local ester anesthetics, and neuromuscular blocking drugs. Natural glycoalkaloid toxins produced by plants of the family Solanaceae, which includes potatoes and tomatoes, inhibit both AChE and BuChE. Here the authors assess the extent to which two solanaceous glycoalkaloids (SGAs), alpha-solanine and alpha-chaconine, can alter the effects of neuromuscular blocking drugs and cholinesterase inhibitors in vivo and in vitro. METHODS: Inhibition of purified human AChE and BuChE by SGAs, neuromuscular blocking drugs, and cholinesterase inhibitors was assessed by an in vitro colorimetric cholinesterase assay. In vivo experiments were carried out using anesthetized rabbits to test whether SGAs affect recovery from mivacurium-induced paralysis. RESULTS: SGAs inhibited human BuChE at concentrations similar to those found in serum of individuals who have eaten a standard serving of potatoes. Coapplication of SGAs (30-100 nm) with neuromuscular blocking drugs and cholinesterase inhibitors produced additive cholinesterase inhibition. SGA administration to anesthetized rabbits inhibited serum cholinesterase activity and mivacurium hydrolysis. In addition, SGA prolonged the time needed for recovery from mivacurium-induced paralysis (149 +/- 12% of control; n = 12). CONCLUSIONS: These findings support the hypothesis that inhibition of endogenous enzyme systems by dietary factors can influence anesthetic drug metabolism and duration of action. Diet may contribute to the wide variation in recovery time from neuromuscular blockade seen in normal, healthy individuals.  (+info)

Lipopolysaccharides of Rhizobium etli strain G12 act in potato roots as an inducing agent of systemic resistance to infection by the cyst nematode Globodera pallida. (77/1525)

Recent studies have shown that living and heat-killed cells of the rhizobacterium Rhizobium etli strain G12 induce in potato roots systemic resistance to infection by the potato cyst nematode Globodera pallida. To better understand the mechanisms of induced resistance, we focused on identifying the inducing agent. Since heat-stable bacterial surface carbohydrates such as exopolysaccharides (EPS) and lipopolysaccharides (LPS) are essential for recognition in the symbiotic interaction between Rhizobium and legumes, their role in the R. etli-potato interaction was studied. EPS and LPS were extracted from bacterial cultures, applied to potato roots, and tested for activity as an inducer of plant resistance to the plant-parasitic nematode. Whereas EPS did not affect G. pallida infection, LPS reduced nematode infection significantly in concentrations as low as 1 and 0.1 mg ml(-1). Split-root experiments, guaranteeing a spatial separation of inducing agent and challenging pathogen, showed that soil treatments of one half of the root system with LPS resulted in a highly significant (up to 37%) systemic induced reduction of G. pallida infection of potato roots in the other half. The results clearly showed that LPS of R. etli G12 act as the inducing agent of systemic resistance in potato roots.  (+info)

Early physiological and cytological events induced by wounding in potato tuber. (78/1525)

The response of potato tuber (Solanum tuberosum L. cv. Kennebec) to mechanical wounding was investigated at different times. Changes in the levels of indole-3-acetic acid (IAA), polyunsaturated fatty acids (PUFAs) and lipid hydroperoxides (LOOHs) were monitored up to 120 min after wounding and related to the cytological events occurring up to 24 h. Twenty minutes after injury, an increase in IAA and LOOH levels and a decrease in the levels of PUFAs was observed. Wounding induced mitoses in differentiated (parenchyma) cells starting at 120 min, and promoted an increase of mitotic activity in the meristematic cells (procambium and bud dome), after 360 min. The inhibition of the increase in LOOHs and IAA by lipoxygenase (LOX) inhibitors, as well as the ability of in vitro peroxidated linoleic acid to enhance IAA production, suggest a close relationship among lipoperoxidation, IAA and mitotic activity in the response of potato tuber cells to injury, resulting in a specific growth response, i.e. bud growth and periderm formation.  (+info)

Ontogenetic changes of potato plants during acclimation to elevated carbon dioxide. (79/1525)

Transgenic potato plants (Solanum tuberosum cv. Desiree) with an antisense repression of the chloroplastic triosephosphate translocator were compared with wild-type plants. Plants were grown in chambers with either an atmosphere with ambient (400 mu bar) or elevated (1000 mu bar) CO2. After 7 weeks, the rate of CO2 assimilation between wild-type and transgenic plants in both CO2 concentrations was identical, but the tuber yield of both plant lines was increased by about 30%, when grown in elevated CO2. One explanation is that plants respond to the elevated CO2 only at a certain growth stage. Therefore, growth of wild-type plants was analysed between the second and the seventh week. Relative growth rate and CO2 assimilation were stimulated in elevated CO2 only in the second and the third weeks. During this period, the carbohydrate content of leaves grown with elevated CO2 was lower than that of leaves grown with ambient CO2. In plants grown in elevated CO2, the rate of CO2 assimilation started to decline after 5 weeks, and accumulation of carbohydrates began after 7 weeks. From this observation it was concluded that acclimation of potato plants to elevated CO2 is the result of accelerated development rather than of carbohydrate accumulation causing down-regulation of photosynthesis. For a detailed analysis for the cause of the stimulation of growth after 2 weeks, the contents of phosphorylated intermediates of wild-type plants and transgenics were measured. Stimulation of CO2 assimilation was accompanied by changes in the contents of phosphorylated intermediates, resulting in an increase in the amount of dihydroxyacetone phosphate, the metabolite which is exported from the chloroplast into the cytosol. An increase of dihydroxyacetone phosphate was found in wild-type plants in elevated CO2 when compared with ambient CO2 and in triosephosphate translocator antisense plants in ambient CO2, but not in the transgenic plants when grown in elevated CO2. These plants were not able to increase dihydroxyacetone phosphate further to cope with the increased CO2 supply. From these changes in phosphorylated intermediates in wild-type and transgenic plants it was concluded that starch and sucrose synthesis pathways can replace each other only at moderate carbon flux rates.  (+info)

Impact of elevated cytosolic and apoplastic invertase activity on carbon metabolism during potato tuber development. (80/1525)

During tuberization in Solanum tuberosum var. Desiree maximal catalytic activities of invertase(s) and sucrose synthase are inversely correlated. During the early stages, invertase activity is high and declines during maturation. The decrease in invertase activity is accompanied by a decrease in the hexose to sucrose ratio and an increase in sucrose synthase activity. This switch is paralleled by the onset of the storage phase as shown by the accumulation of starch and storage proteins. Biochemical and genetic evidence suggests that sucrose synthase activity is positively correlated with sink strength. To explore the possibility of enhancing sink strength in potato tubers by elevating the sucrolytic capacity, transgenic potato plants expressing either cytosolic or apoplastic yeast invertase in their tubers were made. Surprisingly, cytosolic invertase led to a decrease and apoplastic invertase to an increase in tuber yield. To understand the causes of the observed phenotypes, carbon metabolism in tubers of transgenic and control plants was analysed during different stages of tuber development. Both cytosolic and apoplastic invertase resulted in decreased sucrose and elevated glucose contents, indicating that sucrose is accessible in both compartments. Metabolic perturbation, however, was found to be compartment specific. Elevated cytosolic invertase activity led to increased carbon flux towards glycolysis and accumulation of phosphorylated intermediates. The phosphorylated intermediates were not used to build up starch. In contrast, apoplastic invertase does not lead to a significant increase in hexose phosphates compared to untransformed controls. Thus, hexoses originating in the apoplast are not efficiently phosphorylated during potato tuber development, which might be explained by an endocytotic uptake of sucrose and/or hexoses from the apoplast into the vacuole bypassing the cytosolic compartment.  (+info)