Further evidence that prostaglandins inhibit the release of noradrenaline from adrenergic nerve terminals by restriction of availability of calcium. (1/5862)

1 Guinea-pig vasa deferentia were continuously superfused after labelling the transmitter stores with [3H](-)-noradrenaline. Release of [3H]-(-)-noradrenaline was induced by transmural nerve stimulation. 2 Prostglandin E2 (14 nM) drastically reduced the release of [3H]-(-)-noradrenaline, while tetraethylammonium (2 mM), rubidium (6 mM), phenoxybenzamine (3 muM) each in the presence or absence of Uptake 1 or 2 blockade, and prolonged pulse duration (from 0.5 to 2.0 ms) all significantly increased the release of [3H]-(-)-noradrenaline per nerve impulse. 3 The inhibitory effect of prostaglandin E2 on evoked release of [3H]-(-)-noradrenaline was significantly reduced by tetraethylammonium, rubidium and prolonged pulse duration, whilst it was actually enhanced by phenoxybenzamine. This indicates that increased release of noradrenaline per nerve impulse does not per se counteract the inhibitory effect of prostaglandin E2. 4 It is concluded that tetraethylammonium, rubidium and prolonged pulse duration counteracted the inhibitory effect of prostaglandin E2 on T3H]-(-)-noradrenaline release by promoting calcium influx during the nerve action potential. The results are consistent with, and add more weight to the view that prostaglandins inhibit the release of noradrenaline by restriction of calcium availability.  (+info)

Hierarchy of ventricular pacemakers. (2/5862)

To characterize the pattern of pacemaker dominance in the ventricular specialized conduction system (VSCS), escape ventricular pacemakers were localized and quantified in vivo and in virto, in normal hearts and in hearts 24 hours after myocardial infarction. Excape pacemaker foci were localized in vivo during vagally induced atrial arrest by means of electrograms recorded from the His bundle and proximal bundle branches and standard electrocardiographic limb leads. The VSCS was isolated using a modified Elizari preparation or preparations of each bundle branch. Peacemakers were located by extra- and intracellular recordings. Escape pacemaker foci in vivo were always in the proximal conduction system, usually the left bundle branch. The rate was 43+/-11 (mean+/-SD) beats/min. After beta-adrenergic blockade, the mean rate fell to 31+/-10 beats/min, but there were no shifts in pacemaker location. In the infarcted hearts, pacemakers were located in the peripheral left bundle branch. The mean rate was 146+/-20 beats/min. In isolated normal preparations, the dominant pacemakers usually were in the His bundle, firing at a mean rate of 43+/-10 beats/min. The rates of pacemakers diminished with distal progression. In infarcted hearts, the pacemakers invariably were in the infarct zone. The mean firing rates were not influenced by beta-adrenergic blockade. The results indicate that the dominant pacemakers are normally in the very proximal VSCS, but after myocardial infarction pacemaker dominance is shifted into the infarct. Distribution of pacemaker dominance is independent of sympathetic influence.  (+info)

Ganglioneuromas and renal anomalies are induced by activated RET(MEN2B) in transgenic mice. (3/5862)

Multiple endocrine neoplasia type 2B (MEN2B) is an autosomal dominant syndrome characterized by the development of medullary thyroid carcinoma, pheochromocytomas, musculoskeletal anomalies and mucosal ganglioneuromas. MEN2B is caused by a specific mutation (Met918-->Thr) in the RET receptor tyrosine kinase. Different mutations of RET lead to other conditions including MEN2A, familial medullary thyroid carcinoma and intestinal aganglionosis (Hirschsprung disease). Transgenic mice were created using the dopamine beta-hydroxylase promoter to direct expression of RET(MEN2B) in the developing sympathetic and enteric nervous systems and the adrenal medulla. DbetaH-RET(MEN2B) transgenic mice developed benign neuroglial tumors, histologically identical to human ganglioneuromas, in their sympathetic nervous systems and adrenal glands. The enteric nervous system was not affected. The neoplasms in DbetaH-RET(MEN2B) mice were similar to benign neuroglial tumors induced in transgenic mice by activated Ras expression under control of the same promoter. Levels of phosphorylated MAP kinase were not increased in the RET(MEN2B)-induced neurolglial proliferations, suggesting that alternative pathways may play a role in the pathogenesis of these lesions. Transgenic mice with the highest levels of DbetaH-RET(MEN2B) expression, unexpectedly developed renal malformations analogous to those reported with loss of function mutations in the Ret gene.  (+info)

Effects of amlodipine on sympathetic nerve traffic and baroreflex control of circulation in heart failure. (4/5862)

Short-acting calcium antagonists exert a sympathoexcitation that in heart failure further enhances an already elevated sympathetic activity. Whether this is also the case for long-acting formulations is not yet established, despite the prognostic importance of sympathetic activation in heart failure. It is also undetermined whether in this condition long-acting calcium antagonists favorably affect a mechanism potentially responsible for the sympathetic activation, ie, the baroreflex impairment. In 28 heart failure patients (NYHA functional class II) under conventional treatment we measured plasma norepinephrine and efferent postganglionic muscle sympathetic nerve activity (microneurography) at rest and during arterial baroreceptor stimulation and deactivation induced by stepwise intravenous infusions of phenylephrine and nitroprusside, respectively. Measurements were performed at baseline and after 8 weeks of daily oral amlodipine administration (10 mg/d, 14 patients) or before and after an 8-week period without calcium antagonist administration (14 patients). Amlodipine caused a small and insignificant blood pressure reduction. Heart rate, left ventricular ejection fraction, and plasma renin and aldosterone concentrations were not affected. This was the case also for plasma norepinephrine (from 2.43+/-0.41 to 2.50+/-0.34 nmol/L, mean+/-SEM), muscle sympathetic nerve activity (from 54.4+/-5.9 to 51.0+/-4.3 bursts/min), and arterial baroreflex responses. No change in the above-mentioned variables was seen in the control group. Thus, in mild heart failure amlodipine treatment does not adversely affect sympathetic activity and baroreflex control of the heart and sympathetic tone. This implies that in this condition long-acting calcium antagonists can be administered without untoward neurohumoral effects anytime conventional treatment needs to be complemented by drugs causing additional vasodilatation.  (+info)

Cardiac sympathetic activity estimated by 123I-MIBG myocardial imaging in patients with dilated cardiomyopathy after beta-blocker or angiotensin-converting enzyme inhibitor therapy. (5/5862)

Impaired cardiac sympathetic activity can be evaluated by 123I-metaiodobenzylguanidine (MIBG) imaging. METHODS: We studied the significance of MIBG imaging for 24 patients (age 58+/-12 y) with dilated cardiomyopathy (DCM). We compared 12 patients (group A) treated with metoprolol (dose from 30-60 mg/d) with 12 patients treated with angiotensin-converting enzyme (ACE) inhibitors. Patients were studied before treatment, after 5 mo of treatment (only in group A) and after 1 y of treatment. Cardiac MIBG uptake was assessed as the heart-to-mediastinum activity ratio (H/M) and total defect score (TDS) from anterior planar and SPECT MIBG images, which were acquired in 4 h after tracer injection. New York Heart Association (NYHA) class and left ventricular ejection fraction (LVEF) calculated by echocardiography were also assessed. RESULTS: TDS decreased in both groups (in group A, from 30+/-7 through 23+/-9 to 18+/-10; P < 0.01, in group B, from 30+/-6 to 24+/-8; P < 0.01) and H/M was increased in both groups (in group A, from 1.87+/-0.31 through 2.03+/-0.28 to 2.14+/-0.29; P < 0.01, in group B, from 1.82+/-0.28 to 1.94+/-0.26; P < 0.05). But TDS and H/M were more improved in group A than in group B (P < 0.05). LVEF was significantly increased in only group A (from 38+/-6 through 43+/-8 to 49%+/-9%; P < 0.01). NYHA improved in both groups (in group A, from mean 2.5 through 2.1 to 1.8; P < 0.01, in group B, from mean 2.6 to 2.1; P < 0.05) but was more improved in group A than in group B (P < 0.05). CONCLUSION: Cardiac function, symptom and cardiac sympathetic activity evaluated by MIBG images improved after the beta-blocker therapy more than with the treatment that used ACE inhibitors.  (+info)

Sympathetic nerve alterations assessed with 123I-MIBG in the failing human heart. (6/5862)

Norepinephrine (NE) reuptake function is impaired in heart failure and this may participate in myocyte hyperstimulation by the neurotransmitter. This alteration can be assessed by 123I-metaiodobenzylguanidine (MIBG) scintigraphy. METHODS: To determine whether the impairment of neuronal NE reuptake was reversible after metoprolol therapy, we studied 18 patients (43+/-7 y) with idiopathic dilated cardiomyopathy who were stabilized at least for 3 mo with captopril and diuretics. Patients underwent, before and after 6 mo of therapy with metoprolol, measurements of radionuclide left ventricular ejection fraction (LVEF), maximal oxygen consumption and plasma NE concentration. The cardiac adrenergic innervation function was scintigraphically assessed with MIBG uptake and release measurements on the planar images obtained 20 min and 4 h after tracer injection. To evaluate whether metoprolol had a direct interaction with cardiac MIBG uptake and release, six normal subjects were studied before and after a 1-mo metoprolol intake. RESULTS: In controls, neither cardiac MIBG uptake and release nor circulating NE concentration changed after the 1-mo metoprolol intake. Conversely, after a 6-mo therapy with metoprolol, patients showed increased cardiac MIBG uptake (129%+/-10% versus 138%+/-17%; P = 0.009), unchanged cardiac MIBG release and decreased plasma NE concentration (0.930+/-412 versus 0.721+/-0.370 ng/mL; P = 0.02). In parallel, patients showed improved New York Heart Association class (2.44+/-0.51 versus 2.05+/-0.23; P = 0.004) and increased LVEF (20%+/-8% versus 27%+/-8%; P = 0.0005), whereas maximal oxygen uptake remained unchanged. CONCLUSION: Thus, a parallel improvement of myocardial NE reuptake and of hemodynamics was observed after a 6-mo metoprolol therapy, suggesting that such agents may be beneficial in heart failure by directly protecting the myocardium against excessive NE stimulation.  (+info)

Regional patterns of myocardial sympathetic denervation in dilated cardiomyopathy: an analysis using carbon-11 hydroxyephedrine and positron emission tomography. (7/5862)

OBJECTIVE: To assess presynaptic function of cardiac autonomic innervation in patients with advanced congestive heart failure using positron emission tomography (PET) and the recently developed radiolabelled catecholamine analogue carbon-11 hydroxyephedrine (HED) as a marker for neuronal catecholamine uptake function. DESIGN AND PATIENTS: 29 patients suffering from dilated cardiomyopathy with moderate to severe heart failure were compared with eight healthy controls. Perfusion scan was followed by HED dynamic PET imaging of cardiac sympathetic innervation. The scintigraphic results were compared with markers of disease severity and the degree of sympathetic dysfunction assessed by means of heart rate variability. RESULTS: In contrast to nearly normal perfusions, mean (SD) HED retention in dilated cardiomyopathy patients was abnormal in 64 (32)% of the left ventricle. Absolute myocardial HED retention was 10.7 (1.0)%/min in controls v 6.2 (1.6)%/min in dilated cardiomyopathy patients (p < 0.001). Moreover, significant regional reduction of HED retention was demonstrated in apical and inferoapical segments. HED retention was significantly correlated with New York Heart Association functional class (r = -0.55, p = 0. 002) and ejection fraction (r = 0.63, p < 0.001), but not, however, with plasma noradrenaline concentrations as well as parameters of heart rate variability. CONCLUSIONS: In this study, using PET in combination with HED in patients with dilated cardiomyopathy, not only global reduction but also regional abnormalities of cardiac sympathetic tracer uptake were demonstrated. The degree of abnormality was positively correlated to markers of severity of heart failure. The pathogenetic mechanisms leading to the regional differences of neuronal damage as well as the prognostic significance of these findings remain to be defined.  (+info)

Localization of sympathetic, parasympathetic and sensory neurons innervating the heart of the Beijing duck by means of the retrograde transport of horseradish peroxidase. (8/5862)

Sympathetic, parasympathetic and sensory neurons were labeled by injections of horseradish peroxidase into various regions of the heart in 33 Beijing ducks. Sympathetic postganglionic neurons innervating the heart were located in the paravertebral ganglia C15 (C16 is the last cervical segment in the duck) to T3, especially in the ganglion T1. The coronary sulcus and ventricle were more abundantly innervated by sympathetic neurons than the atrium. The left side of the heart was preferentially innervated by sympathetic postganglionic neurons in the left side of paravertebral ganglia but the right side of the heart were equally supplied from the right and left ganglia. Within the medulla oblongata, the number of labeled vagal preganglionic neurons in the nucleus ambiguus was much greater than that in the dorsal motor nucleus of the vagus nerve. Labeled neurons of the nucleus ambiguus were found in many ducks injected into the coronary sulcus. Cardiac sensory neurons were observed in the dorsal root ganglia C15 to T2 (highest in the ganglion T1) and in the nodose and jugular ganglia of the vagus nerve. These labeled neurons probably form the afferent and efferent limbs of cardiac reflexes and control circulation in the Beijing duck.  (+info)