Sequence analysis of a 282-kilobase region surrounding the citrus Tristeza virus resistance gene (Ctv) locus in Poncirus trifoliata L. Raf. (49/1023)

Citrus tristeza virus (CTV) is the major virus pathogen causing significant economic damage to citrus worldwide, and a single dominant gene, Ctv, provides broad spectrum resistance to CTV in Poncirus trifoliata L. Raf. Ctv was physically mapped to a 282-kb region using a P. trifoliata bacterial artificial chromosome library. This region was completely sequenced to about 8x coverage using a shotgun sequencing strategy and primer walking for gap closure. Sequence analysis predicts 22 putative genes, two mutator-like transposons and eight retrotransposons. This sequence analysis also revealed some interesting features of this region of the P. trifoliata genome: a disease resistance gene cluster with seven members and eight retrotransposons clustered in a 125-kb gene-poor region. Comparative sequence analysis suggests that six genes in the Ctv region have significant sequence similarity with their orthologs in bacterial artificial chromosome clones F7H2 and F21T11 from Arabidopsis chromosome I. However, the analysis of gene colinearity between P. trifoliata and Arabidopsis indicates that Arabidopsis genome sequence information may be of limited use for positional gene cloning in P. trifoliata and citrus. Analysis of candidate genes for Ctv is also discussed.  (+info)

Functional divergence of a syntenic invertase gene family in tomato, potato, and Arabidopsis. (50/1023)

Comparative analysis of complex developmental pathways depends on our ability to resolve the function of members of gene families across taxonomic groups. LIN5, which belongs to a small gene family of apoplastic invertases in tomato (Lycopersicon esculentum), is a quantitative trait locus that modifies fruit sugar composition. We have compared the genomic organization and expression of this gene family in the two distantly related species: tomato and Arabidopsis. Invertase family members reside on segmental duplications in the near-colinear genomes of tomato and potato (Solanum tuberosum). These chromosomal segments are syntenically duplicated in the model plant Arabidopsis. On the basis of phylogenetic analysis of genes in the microsyntenic region, we conclude that these segmental duplications arose independently after the separation of the tomato/potato clade from Arabidopsis. Rapid regulatory divergence is characteristic of the invertase family. Interestingly, although the processes of gene duplication and specialization of expression occurred separately in the two species, synteny-based orthologs from both clades acquired similar organ-specific expression. This similar expression pattern of the genes is evidence of comparable evolutionary constraints (parallel evolution) rather than of functional orthology. The observation that functional orthology cannot be identified through analysis of expression similarity highlights the caution that needs to be exercised in extrapolating developmental networks from a model organism.  (+info)

Genomic DNA insertions and deletions occur frequently between humans and nonhuman primates. (51/1023)

Comparative DNA sequence studies between humans and nonhuman primates will be important for understanding the genetic basis of the phenotypic differences between these species. Here we compare approximately 27 Mb of human chromosome 21 with chimpanzee DNA sequences identifying 57 genomic rearrangements (deletions and insertions ranging in size from 0.2 to 8.0 kb) between the two species. These rearrangements are distributed along the entire length of chromosome 21, with approximately 35% found in genomic intervals encoding genes (genic intervals), and have occurred in the genomes of both humans and chimpanzees. Comparison of approximately 9 Mb of human chromosome 21 with orangutan, rhesus macaque, and woolly monkey DNA sequences identified a combined total of 114 genomic rearrangements between humans and nonhuman primates. Analysis of these rearrangements revealed that they are randomly distributed with respect to genic and nongenic intervals and identified one deletion that has likely resulted in the inactivation of a gene (beta1,3-galactosyltransferase) in the woolly monkey. Our data show that genomic rearrangements have occurred frequently during primate genome evolution and significantly contribute to the DNA differences between these species. These DNA rearrangements are commonly found in genic intervals, and thus provide natural starting points for focused investigations of qualitative and quantitative gene expression differences between humans and other primates.  (+info)

Genome duplication, a trait shared by 22000 species of ray-finned fish. (52/1023)

Through phylogeny reconstruction we identified 49 genes with a single copy in man, mouse, and chicken, one or two copies in the tetraploid frog Xenopus laevis, and two copies in zebrafish (Danio rerio). For 22 of these genes, both zebrafish duplicates had orthologs in the pufferfish (Takifugu rubripes). For another 20 of these genes, we found only one pufferfish ortholog but in each case it was more closely related to one of the zebrafish duplicates than to the other. Forty-three pairs of duplicated genes map to 24 of the 25 zebrafish linkage groups but they are not randomly distributed; we identified 10 duplicated regions of the zebrafish genome that each contain between two and five sets of paralogous genes. These phylogeny and synteny data suggest that the common ancestor of zebrafish and pufferfish, a fish that gave rise to approximately 22000 species, experienced a large-scale gene or complete genome duplication event and that the pufferfish has lost many duplicates that the zebrafish has retained.  (+info)

Trichothecene nonproducer Gibberella species have both functional and nonfunctional 3-O-acetyltransferase genes. (53/1023)

The trichothecene 3-O-acetyltransferase gene (FgTri101) required for trichothecene production by Fusarium graminearum is located between the phosphate permease gene (pho5) and the UTP-ammonia ligase gene (ura7). We have cloned and sequenced the pho5-to-ura7 regions from three trichothecene nonproducing Fusarium (i.e., F. oxysporum, F. moniliforme, and Fusarium species IFO 7772) that belong to the teleomorph genus Gibberella. BLASTX analysis of these sequences revealed portions of predicted polypeptides with high similarities to the TRI101 polypeptide. While FspTri101 (Fusarium species Tri101) coded for a functional 3-O-acetyltransferase, FoTri101 (F. oxysporum Tri101) and FmTri101 (F. moniliforme Tri101) were pseudogenes. Nevertheless, F. oxysporum and F. moniliforme were able to acetylate C-3 of trichothecenes, indicating that these nonproducers possess another as yet unidentified 3-O-acetyltransferase gene. By means of cDNA expression cloning using fission yeast, we isolated the responsible FoTri201 gene from F. oxysporum; on the basis of this sequence, FmTri201 has been cloned from F. moniliforme by PCR techniques. Both Tri201 showed only a limited level of nucleotide sequence similarity to FgTri101 and FspTri101. The existence of Tri101 in a trichothecene nonproducer suggests that this gene existed in the fungal genome before the divergence of producers from nonproducers in the evolution of Fusarium species.  (+info)

Genesis and evolution of the Evx and Mox genes and the extended Hox and ParaHox gene clusters. (54/1023)

BACKGROUND: Hox and ParaHox gene clusters are thought to have resulted from the duplication of a ProtoHox gene cluster early in metazoan evolution. However, the origin and evolution of the other genes belonging to the extended Hox group of homeobox-containing genes, that is, Mox and Evx, remains obscure. We constructed phylogenetic trees with mouse, amphioxus and Drosophila extended Hox and other related Antennapedia-type homeobox gene sequences and analyzed the linkage data available for such genes. RESULTS: We claim that neither Mox nor Evx is a Hox or ParaHox gene. We propose a scenario that reconciles phylogeny with linkage data, in which an Evx/Mox ancestor gene linked to a ProtoHox cluster was involved in a segmental tandem duplication event that generated an array of all Hox-like genes, referred to as the 'coupled' cluster. A chromosomal breakage within this cluster explains the current composition of the extended Hox cluster (with Evx, Hox and Mox genes) and the ParaHox cluster. CONCLUSIONS: Most studies dealing with the origin and evolution of Hox and ParaHox clusters have not included the Hox-related genes Mox and Evx. Our phylogenetic analyses and the available linkage data in mammalian genomes support an evolutionary scenario in which an ancestor of Evx and Mox was linked to the ProtoHox cluster, and that a tandem duplication of a large genomic region early in metazoan evolution generated the Hox and ParaHox clusters, plus the cluster-neighbors Evx and Mox. The large 'coupled' Hox-like cluster EvxHox/MoxParaHox was subsequently broken, thus grouping the Mox and Evx genes to the Hox clusters, and isolating the ParaHox cluster.  (+info)

Microarray analysis of rat chromosome 2 congenic strains. (55/1023)

Human essential hypertension is a complex polygenic trait with underlying genetic components that remain unknown. The stroke-prone spontaneously hypertensive rat (SHRSP) is a model of human essential hypertension, and a number of reproducible blood pressure regulation quantitative trait loci have been found to map to rat chromosome 2. The SP.WKYGla2c* congenic strain was produced by introgressing a region of rat chromosome 2 from the normotensive Wistar Kyoto (WKY) strain into the genetic background of the SHRSP. Systolic and diastolic blood pressures were significantly reduced in the SP.WKYGla2c* compared with the SHRSP parental strain (198/134+/-6.1/3.3 versus 172/120+/-3.8/3.4 mm Hg; F=15.8/8.1, P=0.0009/0.013). Genome-wide microarray expression profiling was undertaken to identify differentially expressed genes among the parental SHRSP, WKY, and congenic strain. We identified a significant reduction in expression of glutathione S-transferase mu-type 2, a gene involved in the defense against oxidative stress. Quantitative reverse transcription-polymerase chain reaction relative to a beta-actin standard confirmed the microarray results with SHRSP mRNA at 8.56 x 10(-4) +/-1.6 x 10(-4) compared with SP.WKYGla2c* 3.67 x 10(-3)+/-2.8 x 10(-4) (95% CI -3.9 x 10(-3) to -1.8 x 10(-3); P=0.0034) and WKY 4.03 x 10(-3)+/-5.1 x 10(-4); (95% CI -5.4 x 10(-3) to -8.9 x 10(-4); P=0.027). We also identified regions of conserved synteny, each containing the Gstm2 gene, on mouse chromosome 3 and human chromosome 1.  (+info)

Syntenic relationships between Medicago truncatula and Arabidopsis reveal extensive divergence of genome organization. (56/1023)

Arabidopsis and Medicago truncatula represent sister clades within the dicot subclass Rosidae. We used genetic map-based and bacterial artificial chromosome sequence-based approaches to estimate the level of synteny between the genomes of these model plant species. Mapping of 82 tentative orthologous gene pairs reveals a lack of extended macrosynteny between the two genomes, although marker collinearity is frequently observed over small genetic intervals. Divergence estimates based on non-synonymous nucleotide substitutions suggest that a majority of the genes under analysis have experienced duplication in Arabidopsis subsequent to divergence of the two genomes, potentially confounding synteny analysis. Moreover, in cases of localized synteny, genetically linked loci in M. truncatula often share multiple points of synteny with Arabidopsis; this latter observation is consistent with the large number of segmental duplications that compose the Arabidopsis genome. More detailed analysis, based on complete sequencing and annotation of three M. truncatula bacterial artificial chromosome contigs suggests that the two genomes are related by networks of microsynteny that are often highly degenerate. In some cases, the erosion of microsynteny could be ascribed to the selective gene loss from duplicated loci, whereas in other cases, it is due to the absence of close homologs of M. truncatula genes in Arabidopsis.  (+info)