Seroprevalence of hepatitis B virus, hepatitis C virus and GB virus-C infections in Siberia. (1/177)

We studied the seroprevalence of hepatitis B virus (HBV), hepatitis C virus (HCV) and GB virus-C (GBV-C) infections in 348 Siberian natives who lived in the Kamchatka Peninsula of Russia. Of 348 samples studied, the seroprevalence of HBsAg and anti-HBs were 11.8% (41 of 348 samples) and 35.9% (125 of 348 samples), respectively. The prevalence of HCV infection was 1.4% (5 of 348 samples), and that of GBV-C RNA, using RT-PCR methods, was 7.5% (26 of 348 samples). In Siberia, the prevalences of HBV and GBV-C infections were about tenfold higher than those in Japan. The prevalence of HBsAg in subjects under 50 years of age was significantly higher than that in those over 50 years old (P < 0.05). Because HBV infection is highly endemic in Siberia, we propose that the community-based mass immunization must be conducted as soon as possible in this area.  (+info)

Thiorhodospira sibirica gen. nov., sp. nov., a new alkaliphilic purple sulfur bacterium from a Siberian soda lake. (2/177)

A new purple sulfur bacterium was isolated from microbial films on decaying plant mass in the near-shore area of the soda lake Malyi Kasytui (pH 9.5, 0.2% salinity) located in the steppe of the Chita region of south-east Siberia. Single cells were vibrioid- or spiral-shaped (3-4 microns wide and 7-20 microns long) and motile by means of a polar tuft of flagella. Internal photosynthetic membranes were of the lamellar type. Lamellae almost filled the whole cell, forming strands and coils. Photosynthetic pigments were bacteriochlorophyll a and carotenoids of the spirilloxanthin group. The new bacterium was strictly anaerobic. Under anoxic conditions, hydrogen sulfide and elemental sulfur were used as photosynthetic electron donors. During growth on sulfide, sulfur globules were formed as intermediate oxidation products. They were deposited outside the cytoplasm of the cells, in the peripheral periplasmic space and extracellularly. Thiosulfate was not used. Carbon dioxide, acetate, pyruvate, propionate, succinate, fumarate and malate were utilized as carbon sources. Optimum growth rates were obtained at pH 9.0 and optimum temperature was 30 degrees C. Good growth was observed in a mineral salts medium containing 5 g sodium bicarbonate l-1 without sodium chloride. The new bacterium tolerated up to 60 g sodium chloride l-1 and up to 80 g sodium carbonates l-1. Growth factors were not required. The DNA G + C composition was 56.0-57.4 mol%. Based on physiological, biochemical and genetic characteristics, the newly isolated bacterium is recognized as a new species of a new genus with the proposed name Thiorhodospira sibirica.  (+info)

Natural experimental models: the global search for biomedical paradigms among traditional, modernizing, and modern populations. (3/177)

During the past four decades, biomedical scientists have slowly begun to recognize the unique opportunities for studying biomedical processes, disease etiology, and mechanisms of pathogenesis in populations with unusual genetic structures, physiological characteristics, focal endemic disease, or special circumstances. Such populations greatly extend our research capabilities and provide a natural laboratory for studying relationships among biobehavioral, genetic, and ecological processes that are involved in the development of disease. The models presented illustrate three different types of natural experiments: those occurring in traditionally living, modernizing, and modern populations. The examples are drawn from current research that involves population mechanisms of adaptation among East African Turkana pastoralists; a search for etiology and mechanisms of pathogenesis of an emerging disease among the Yakut people of Siberia; and psychosocial stress, hypertension, and cardiovascular disease in women working outside the home in New York City and among subpopulations in Hawaii. The models in general, and the examples in specific, represent natural laboratories in which relatively small intrapopulation differences and large interpopulation differences can be used to evaluate health and disease outcomes.  (+info)

Biodosimetry results obtained by various cytogenetic methods and electron spin resonance spectrometry among inhabitants of a radionuclide contaminated area around the siberian chemical plant (Tomsk-7). (4/177)

On April 6, 1993, near the town of Tomsk (Russia) there was an accident at the Siberian Chemical Plant (SCP) which resulted in extensive contamination of an area of 250 km(2) to the north of SCP with long-lived radionuclides such as (239)Pu, (137)Cs and (90)Sr. Cytogenetic methods and electron spin resonance (ESR) spectrometry of tooth enamel were used to estimate the radiation doses received by the population. The ESR signal intensity and the chromosomal aberration frequency in lymphocytes of the tooth donors showed a good correlation. The data showed that 15% of the inhabitants of the Samus settlement received a radiation dose >90 cGy. The exceptions were results of an examination of fishermen, where ESR gave high values (80-210 cGy) but both the chromosome assay and the cytokinesis block micronucleus method gave lower ones (8-52 cGy). A large increase in chromosome damage was observed in people born between 1961 and 1969. It was found that during these years several serious accidents at the Siberian Chemical Plant had occurred causing radiation pollution of the area. The number of cells with chromosome aberrations was significantly less among the people arriving in Samus after 1980. We found good correlations between the level of carotene consumption and a decrease in frequency of both micronuclei in binucleated lymphocytes (r = 0.68, P < 0.01) and chromatid aberrations (r = 0.61, P < 0.01) among the inhabitants. We also examined the inhabitants of Samus for opisthorchis infection, which was present in 30% of the population. The Samus inhabitants affected by Opisthorchis felineus showed significantly increased levels of micronuclei in binucleated lymphocytes and chromatid aberrations as compared with the controls.  (+info)

Chromosome breakage at sites of oncogenes in a population accidentally exposed to radioactive chemical pollution. (5/177)

The purpose of the present study was to investigate the level of aberrations at fragile sites of chromosomes in peripheral blood lymphocytes of the population of an area polluted with radionuclides, following an accident at the Siberian Chemical Plant. We carried out the micronucleus test to screen people with radiation-related cytogenetic effects. Of the 1246 inhabitants of the settlement of Samus examined, 148 showed a significantly increased frequency of micronucleated erythrocytes and were selected for chromosome analysis as a radiation-exposed group. Additional analysis was carried out on 40 patients with gastric cancer and atrophic gastritis with stage II-III epithelial dysplasia. Eighty six individuals from a non-polluted area were used as a control group. Chromosomal breaks and exchanges occurred preferentially in chromosomes 3 and 6 among radiation-exposed persons and patients. The regions 3p14-25 and 6p23 were damaged most often. There was a tendency to preferential involvement of q21-25 of chromosome 6 in patients with gastric cancer and atrophic gastritis. Specific damage at certain chromosome sites was observed in the radiation-exposed population as well as in patients with gastric cancer. Most often this damage was located near oncogene loci, which could imply that chromosome damage induced by radiation is likely to be a predisposing factor to the expression of oncogenes and malignant transformation of cells in exposed individuals.  (+info)

Y-Chromosome evidence for a northward migration of modern humans into Eastern Asia during the last Ice Age. (6/177)

The timing and nature of the arrival and the subsequent expansion of modern humans into eastern Asia remains controversial. Using Y-chromosome biallelic markers, we investigated the ancient human-migration patterns in eastern Asia. Our data indicate that southern populations in eastern Asia are much more polymorphic than northern populations, which have only a subset of the southern haplotypes. This pattern indicates that the first settlement of modern humans in eastern Asia occurred in mainland Southeast Asia during the last Ice Age, coinciding with the absence of human fossils in eastern Asia, 50,000-100,000 years ago. After the initial peopling, a great northward migration extended into northern China and Siberia.  (+info)

Metabolic activity of permafrost bacteria below the freezing point. (7/177)

Metabolic activity was measured in the laboratory at temperatures between 5 and -20 degrees C on the basis of incorporation of (14)C-labeled acetate into lipids by samples of a natural population of bacteria from Siberian permafrost (permanently frozen soil). Incorporation followed a sigmoidal pattern similar to growth curves. At all temperatures, the log phase was followed, within 200 to 350 days, by a stationary phase, which was monitored until the 550th day of activity. The minimum doubling times ranged from 1 day (5 degrees C) to 20 days (-10 degrees C) to ca. 160 days (-20 degrees C). The curves reached the stationary phase at different levels, depending on the incubation temperature. We suggest that the stationary phase, which is generally considered to be reached when the availability of nutrients becomes limiting, was brought on under our conditions by the formation of diffusion barriers in the thin layers of unfrozen water known to be present in permafrost soils, the thickness of which depends on temperature.  (+info)

Thioalkalicoccus limnaeus gen. nov., sp. nov., a new alkaliphilic purple sulfur bacterium with bacteriochlorophyll b. (8/177)

Four strains of purple sulfur bacteria containing bacteriochlorophyll b were isolated from cyanobacterial mats of soda lakes in the steppe of south-east Siberia, Russia. Cells of all strains were cocci without gas vesicles. Eventually, cells with flagella were seen in the electron microscope, but motile cells were observed very rarely in cultures. Internal photosynthetic membranes were of the tubular type. Photosynthetic pigments were bacteriochlorophyll b and carotenoids with spectral characteristics similar to 3,4,3',4'-tetrahydrospirilloxanthin. The bacteria were obligately phototrophic and strictly anaerobic. Hydrogen sulfide and elemental sulfur were used as photosynthetic electron donors. Thiosulfate was not used. During growth on sulfide, sulfur globules were formed as intermediate oxidation products, deposited inside the cells and centrally located. In the presence of sulfide and sodium bicarbonate, acetate, malate, propionate, pyruvate, succinate, fumarate and yeast extract were photoassimilated. Growth factors were not required. The new bacterium is an obligate alkaliphile growing at pH 8-10 with an optimum at pH 9. It showed good growth up to 6.0% sodium chloride and up to 8.5% sodium carbonates. Phenotypically, it is similar to Thiococcus pfennigii, but different by virtue of its alkaliphily and salt tolerance. The DNA G+C content was 63.6-64.8 mol %, compared to 69.4-69.9 mol % for Thiococcus pfennigii. The 16S rDNA sequence of strain A26T was approximately 92% similar to that of Thiococcus pfennigii DSM 226 and therefore a new genus and species name, Thioalkalicoccus limnaeus gen. nov. and sp. nov., are proposed for the new bacterium.  (+info)