Identification and characterization of a zinc finger gene (ZNF213) from 16p13.3. (33/178859)

During our search for the familial Mediterranean fever (FMF) gene, we identified by cDNA selection a 1.2 kb cDNA fragment representing a novel human gene that is expressed in a wide variety of tissues. This gene spans approx. 8.0 kb genomic DNA and has seven exons. Its 3' untranslated region contains a long tandem repeat that gives rise to a polymorphism with two alleles of approx. 1.1 kb and 1.0 kb, with the 1.1 kb allele in strong linkage disequilibrium with FMF in patients of different ethnic backgrounds. However, both genetic and mutational analyses have excluded this gene as the one responsible for FMF. The predicted 424 amino acid protein, designated ZNF213, contains three C2H2 zinc fingers, a Kruppel associated A box and a leucine rich motif (LeR domain/SCAN box), strongly suggestive of a transcription factor.  (+info)

Functional studies by site-directed mutagenesis on the role of Sp1 in the expression of the pyruvate kinase M and aldolase A genes. (34/178859)

During the cell cycle of mitogen stimulated rat thymocytes, an 8-10-fold induction of glycolytic enzymes and a corresponding increase in the mRNA levels has been observed. This prompted us to study the transcriptional regulation of the rat aldolase A and pyruvate kinase M genes. cis-Regulatory elements of both promoters were evaluated by site-directed mutagenesis of promoter/luciferase constructs and transient transfections of rat hepatoma FTO2B cells. Furthermore, the binding proteins were identified by mobility shift assays in the presence of specific antibodies. In the aldolase AH1 promoter, five binding sites for Sp1 and Sp3 and a TPA responsive element were identified as essential for transcriptional regulation. Most of the promoter activity can be attributed to these regulatory elements. In the pyruvate kinase M promoter three out of five binding sites of Sp1 and Sp3 (B box and GC boxes 1 and 3) turned out to be functional in the transfection assays whereas the disruption of GC box 2 had no effect, and the disruption of the GC box 4 had only a minor effect on the promoter activity. Both promoters are stimulated by Sp1 as well as Sp3, as judged by cotransfection experiments of Drosophila SL2 cells. Therefore, the Sp1- and Sp3-directed transcription provides a means for common regulatory mechanism of the aldolase A and the pyruvate kinase M genes.  (+info)

Promoter and exon-intron structure of the protein kinase C gene from the marine sponge Geodia cydonium: evolutionary considerations and promoter activity. (35/178859)

We report the gene structure of a key signaling molecule from a marine sponge, Geodia cydonium. The selected gene, which codes for a classical protein kinase C (cPKC), comprises 13 exons and 12 introns; the introns are, in contrast to those found in cPKC from higher Metazoa, small in size ranging from 93 nt to 359 nt. The complete gene has a length of 4229 nt and contains exons which encode the characteristic putative regulatory and catalytic domains of metazoan cPKCs. While in the regulatory domain only one intron is in phase 0, in the catalytic domain most introns are phase 0 introns, suggesting that the latter only rarely undergo module duplication. The 5'-flanking sequence of the sponge cPKC gene contains a TATA-box like motif which is located 35-26 nt upstream from the start of the longest sequenced cDNA. This 5'-flanking sequence was analyzed for promoter activity. The longest fragment (538 nt) was able to drive the expression of luciferase in transient transfections of NIH 3T3 fibroblasts; the strong activity of the sponge promoter was found to be half the one displayed by the SV40 reference promoter. Deletion analysis demonstrates that the AP4 site and the GC box which is most adjacent to the TATA box are the crucial elements for maximal promoter activity. The activity of the promoter is not changed in 3T3 cells which are kept serum starved or in the presence of a phorbol ester. In conclusion, these data present the phylogenetically oldest cPKC gene which contains in the 5'-flanking region a promoter functional in the heterologous mammalian cell system.  (+info)

Cloning and characterization of the promoters of the maxiK channel alpha and beta subunits. (36/178859)

Large conductance, calcium-activated potassium (maxiK) channels are expressed in nerve, muscle, and other cell types and are important determinants of smooth muscle tone. To determine the mechanisms involved in the transcriptional regulation of maxiK channels, we characterized the promoter regions of the pore forming (alpha) and regulatory (beta) subunits of the human channel complex. Maximum promoter activity (up to 12.3-fold over control) occurred between nucleotides -567 and -220 for the alpha subunit (hSlo) gene. The minimal promoter is GC-rich with 5 Sp-1 binding sites and several TCC repeats. Other transcription factor-binding motifs, including c/EBP, NF-kB, PU.1, PEA-3, Myo-D, and E2A, were observed in the 5'-flanking sequence. Additionally, a CCTCCC sequence, which increases the transcriptional activity of the SM1/2 gene in smooth muscle, is located 27 bp upstream of the TATA-like sequence, a location identical to that found in the SM1/2 5'-flanking region. However, the promoter directed equivalent expression when transfected into smooth muscle and other cell types. Analysis of the hSlo beta subunit 5'-flanking region revealed a TATA box at position -77 and maximum promoter activity (up to 11.0-fold) in a 200 bp region upstream from the cap site. Binding sites for GATA-1, Myo-D, c-myb, Ets-1/Elk-1, Ap-1, and Ik-2 were identified within this sequence. Two CCTCCC elements are present in the hSlo beta subunit promoter, but tissue-specific transcriptional activity was not observed. The lack of tissue-specific promoter activity, particularly the finding of promoter activity in cells from tissues in which the maxiK gene is not expressed, suggests a complex channel regulatory mechanism for hSlo genes. Moreover, the lack of similarity of the promoters of the two genes suggests that regulation of coordinate expression of the subunits does not occur through equivalent cis-acting sequences.  (+info)

Kinetoplast DNA minicircles of Leishmania donovani express a protein product. (37/178859)

We describe an unprecedented finding of an open reading frame present in the variable region in one of the minicircle sequence classes of a human pathogenic strain of Leishmania donovani (MHOM/IN/90/RMRI 68) which is transcribed and translated. The encoded protein showed homologies to known transport proteins.  (+info)

Cloning and characterisation of a novel ompB operon from Vibrio cholerae 569B. (38/178859)

The ompB operon of Vibrio cholerae 569B has been cloned and fully sequenced. The operon encodes two proteins, OmpR and EnvZ, which share sequence identity with the OmpR and EnvZ proteins of a variety of other bacteria. Although the order of the ompR and envZ genes of V. cholerae is similar to that of the ompB operon of E. coli, S. typhimurium and X. nematophilus, the Vibrio operon exhibits a number of novel features. The structural organisation and features of the V. cholerae ompB operon are described.  (+info)

Characterization and expression of the cDNA encoding a new kind of phospholipid transfer protein, the phosphatidylglycerol/phosphatidylinositol transfer protein from Aspergillus oryzae: evidence of a putative membrane targeted phospholipid transfer protein in fungi. (39/178859)

The full-length cDNA of a phospholipid transfer protein (PLTP) was isolated from Aspergillus oryzae by a RACE-PCR procedure using degenerated primer pool selected from the N-terminal sequence of the purified phosphatidylinositol/phosphatidylglycerol transfer protein (PG/PI-TP). The cDNA encodes a 173 amino acid protein of 18823 Da. The deduced amino acid sequence from position 38 to 67 is 100% identical to the N-terminal sequence (first 30 amino acids) of the purified PG/PI-TP. This amino acid sequence is preceded by a leader peptide of 37 amino acids which is predicted to be composed of a signal peptide of 21 amino acids followed by an extra-sequence of 16 amino acids, or a membrane anchor protein signal (amino acid 5-29). This strongly suggests that the PG/PI-TP is a targeted protein. The deduced mature protein is 138 amino acids long with a predicted molecular mass of 14933 Da. Comparison of the deduced PG/PI-TP sequence with other polypeptide sequences available in databases revealed a homology with a protein deduced from an open reading frame coding for an unknown protein in Saccharomyces cerevisiae (36% identity and 57% similarity). Apart from this homology, the PG/PI-TP is unique and specific to the filamentous fungi on the basis of comparison of PLTP protein sequences. Northern blot analysis of RNA isolated from A. oryzae cultures grown on glucose or glucose supplemented with phospholipids suggests that the PG/PI-TP is transcribed by only one RNA species and allows us to show that expression of the protein is regulated at the messenger RNA level.  (+info)

Cloning of a novel gene specifically expressed in clonal mouse chondroprogenitor-like EC cells, ATDC5. (40/178859)

We cloned a full-length cDNA encoding a novel mouse protein, A-C2, by differential display method using mouse embryonic fibroblast C3H10T1/2 cells and mouse chondroprogenitor-like EC cells, ATDC5. The deduced amino acid sequence of A-C2 consisted of 106 amino acids with no significant homology to the sequences previously reported. Northern blot analysis showed two major bands of 2.1 and 1.8 kb sizes. Expression of A-C2 mRNA was exclusive to ATDC5 cells at their undifferentiated stage. None of ATDC5 cells at their differentiated stage and adult mice tissues examined expressed A-C2 gene.  (+info)