Degradation of substituted indoles by an indole-degrading methanogenic consortium. (25/95)

Degradation of indole by an indole-degrading methanogenic consortium enriched from sewage sludge proceeded through a two-step hydroxylation pathway yielding oxindole and isatin. The ability of this consortium to hydroxylate and subsequently degrade substituted indoles was investigated. Of the substituted indoles tested, the consortium was able to transform or degrade 3-methylindole and 3-indolyl acetate. Oxindole, 3-methyloxindole, and indoxyl were identified as metabolites of indole, 3-methylindole, and 3-indolyl acetate degradation, respectively. Isatin (indole-2,3-dione) was produced as an intermediate when the consortium was amended with oxindole, providing evidence that degradation of indole proceeded through successive hydroxylation of the 2- and 3-positions prior to ring cleavage between the C-2 and C-3 atoms on the pyrrole ring of indole. The presence of a methyl group (-CH3) at either the 1- or 2-position of indole inhibited the initial hydroxylation reaction. The substituted indole, 3-methylindole, was hydroxylated in the 2-position but not in the 3-position and could not be further metabolized through the oxindole-isatin pathway. Indoxyl (indole-3-one), the deacetylated product of 3-indolyl acetate, was not hydroxylated in the 2-position and thus was not further metabolized by the consortium. When an H atom or electron-donating group (i.e., -CH3) was present at the 3-position, hydroxylation proceeded at the 2-position, but the presence of electron-withdrawing substituent groups (i.e., -OH or -COOH) at the 3-position inhibited hydroxylation.  (+info)

Regulation of CYP2A6 protein expression by skatole, indole, and testicular steroids in primary cultured pig hepatocytes. (26/95)

CYP2A6 is one of the enzymes involved in the hepatic metabolism of a naturally produced compound, skatole, in the pig. Low CYP2A6 activity has been linked to excessive accumulation of skatole in pig adipose tissue and development of the phenomenon "boar taint." CYP2A6 activity varies between male and female animals, suggesting the involvement of sex hormones in regulation of the enzyme activity and/or expression. The present study investigated whether pig hepatic CYP2A6 protein expression is regulated by the testicular steroids testosterone, androstenone, or estrone sulfate using primary cultured hepatocytes as a model system. The study has also examined whether CYP2A6 expression can be modulated by the boar taint compounds skatole and indole. The research has established that androstenone inhibits CYP2A6 protein expression at the concentration of 1, 10, and 100 nM by 55, 37, and 44%, respectively. In contrast to androstenone, skatole and indole (final concentrations, 1, 10, and 100 nM) had a stimulatory effect on CYP2A6 expression. The effect of indole was more pronounced than that of skatole (maximum induction by 145 and 70%, respectively). Estrone sulfate and testosterone did not have a significant effect on CYP2A6 protein level. This is, as far as we know, the first communication to report the regulation of pig hepatic CYP2A6 expression by steroids and boar taint compounds. The hormonal modulation of CYP2A6 expression might contribute to gender-related differences in pig hepatic CYP2A6 activity and skatole accumulation in pig adipose tissue.  (+info)

Mechanism-based inactivation of lung-selective cytochrome P450 CYP2F enzymes. (27/95)

3-Methylindole (3MI) is a pneumotoxin that requires P450-catalyzed metabolic activation (dehydrogenation), to an electrophilic methylene imine to elicit toxicity. Previous studies have shown that the human pulmonary cytochrome P450 enzyme, CYP2F1, and its goat analog, CYP2F3, catalyzed the dehydrogenation of 3MI. However, it was not known whether the dehydrogenation product could bind to active site nucleophilic residues to inactivate these enzymes. Therefore, the purpose of this study was to determine whether 3MI is a mechanism-based inhibitor of CYP2F3 and CYP2F1. The results showed that both enzymes were highly susceptible to 3MI-mediated suicide inactivation. The k(inact) and the K(I) for CYP2F3 were 0.09/min and 160 microM, respectively, and the approximate partition ratio was 220. Although CYP2F3 lost approximately 80% of its activity in 30 min, a concurrent loss of its reduced carbon monoxide complex was not observed, suggesting that the heme was not destroyed/modified during the inactivation. The exogenous nucleophile, glutathione, did not protect CYP2F1 from 3MI-mediated inactivation, suggesting that the reactive intermediate did not diffuse from the active site before inactivation events. Dialysis of 3MI-inactivated CYP2F3 did not restore activity, and alternate substrates protected CYP2F3. In addition, 3MI inhibited the 7-ethoxycoumarin deethylase activity of human CYP2F1 in a time- and concentration-dependent manner; the k(inact) and K(I) were 0.025/min and 49 microM, respectively. In conclusion, this study presents evidence that 3MI is a mechanism-based inhibitor of both CYP2F3 and CYP2F1, which are important enzymes in the bioactivation of pneumotoxicants such as 3MI or 1,1-dichloroethylene or carcinogens such as naphthalene, benzene, and styrene.  (+info)

Genetic and metabolic aspects of androstenone and skatole deposition in pig adipose tissue: a review. (28/95)

High levels of androstenone and skatole in fat tissues are considered the primary causes of boar taint, an unpleasant odour and flavour of the meat from non-castrated male pigs. The aim of this article is to review our current knowledge of the biology and genetic control of the accumulation of androstenone and skatole in fat tissue. Two QTL mapping studies have shown the complexity of the genetic control of these traits. During the last ten years, several authors have taken a more physiological approach to investigate the involvement of genes controlling the metabolism of androstenone and skatole. Although some authors have claimed the identification of candidate genes, it is more appropriate to talk about target genes. This suggests that genes affecting androstenone and skatole levels will have to be sought for among specific or non-specific transcription factors interacting with these target genes.  (+info)

Catabolic pathway for the production of skatole and indoleacetic acid by the acetogen Clostridium drakei, Clostridium scatologenes, and swine manure. (29/95)

 (+info)

Single mutations change CYP2F3 from a dehydrogenase of 3-methylindole to an oxygenase. (30/95)

 (+info)

Association between SNPs within candidate genes and compounds related to boar taint and reproduction. (31/95)

 (+info)

3-Methylindole is mutagenic and a possible pulmonary carcinogen. (32/95)

 (+info)