Effects of a Quillaja saponaria extract on growth performance and immune function of weanling pigs challenged with Salmonella typhimurium. (1/8)

Ninety-six pigs (initially 8.9 kg and 24 d of age) were used in a 28-d experiment to determine the effects of Quillaja saponaria extract (QS) on weanling pig growth performance and immune function in response to enteric disease challenge with Salmonella typhimurium (ST). Experimental treatments were arranged in a 2 x 4 factorial with main effects of disease challenge (control vs ST-challenge) and dietary addition of QS (0, 125, 250, or 500 mg/kg). Pigs were fed QS diets for 14 d and then challenged orally with ST or sterile media. There were no differences in ADG or ADFI among dietary treatments, but gain/feed ratio (G/ F) was depressed (P < 0.06) in pigs fed 250 mg/kg QS. ST-challenge reduced ADG (P < 0.05), ADFI (P < 0.05), and G/F (P < 0.05) 1 wk after challenge. Daily estimates revealed reductions in feed intake in ST-infected pigs on d 2 to 5 following infection (P < 0.05), and rectal temperature was increased maximally 2 d following infection (P < 0.05). There was a marked decline in serum IGF-I during the 6 d after ST-infection (P < 0.05). ST-challenge produced a rise (P < 0.05) in serum haptoglobin on d 7 after challenge, and serum alpha1-acid glycoprotein (AGP) in ST-challenged pigs also was elevated (P < 0.05) above controls on d 7 and 14 after challenge. Serum immunoglobulin (Ig) M increased (P < 0.05) over time in both groups, and serum IgM of ST-challenged pigs was greater than controls on d 7 after challenge (P < 0.05). Serum IgG was not affected by enteric disease challenge; however, on d 7 and 14 after disease challenge, serum IgG for both groups was greater (P < 0.05) than on d 0. Dietary QS had no significant influence on any of the end points used to characterize the acute phase response to ST-challenge. Phagocytic cell function was depressed in pigs fed 250 (P < 0.05) and 500 (P < 0.05) mg/kg as compared to pigs fed 125 mg/kg QS. Yet, there was no difference in phagocytic function among pigs fed 0, 250, or 500 mg/kg QS. We conclude that this model of enteric disease invokes an acute phase response accompanied by decreases in feed intake and serum IGF-I. Furthermore, dietary QS, at the levels fed in this study, appears to offer little benefit to growth performance or immune function in the presence or absence of ST-challenge.  (+info)

The cytotoxic activity of ribosome-inactivating protein saporin-6 is attributed to its rRNA N-glycosidase and internucleosomal DNA fragmentation activities. (2/8)

Saporin-6 produced by the plant Saponaria officinalis belongs to the family of single chain ribosome-inactivating proteins. It potently inhibits protein synthesis in eukaryotic cells, by cleaving the N-glycosidic bond of a specific adenine in 28 S rRNA, which results in the cell death. Saporin-6 has also been shown to be active on DNA and induces apoptosis. In the current study, we have investigated the roles of rRNA depurination and the activity of saporin-6 on genomic DNA in its cytotoxic activity. The role of putative active site residues, Tyr(72), Tyr(120), Glu(176), Arg(179), and Trp(208), and two invariant residues, Tyr(16) and Arg(24), proposed to be important for structural stability of saporin-6, has been investigated in its catalytic and cytotoxic activity. These residues were mutated to alanine to generate seven mutants, Y16A, R24A, Y72A, Y120A, E176A, R179A, and W208A. We show that for the RNA N-glycosidase activity of saporin-6, residues Tyr(16), Tyr(72), and Arg(179) are absolutely critical; Tyr(120) and Glu(176) can be partially dispensed with, whereas Trp(208) and Arg(24) do not appear to be involved in this activity. The residues Tyr(72), Tyr(120), Glu(176), Arg(179), and Trp(208) were found to be essential for the genomic DNA fragmentation activity, whereas residues Tyr(16) and Arg(24) do not appear to be required for the DNA fragmentation. The study shows that saporin-6 possesses two catalytic activities, namely RNA N-glycosidase and genomic DNA fragmentation activity, and for its complete cytotoxic activity both activities are required.  (+info)

Saponin biosynthesis in Saponaria vaccaria. cDNAs encoding beta-amyrin synthase and a triterpene carboxylic acid glucosyltransferase. (3/8)

Saponaria vaccaria (Caryophyllaceae), a soapwort, known in western Canada as cowcockle, contains bioactive oleanane-type saponins similar to those found in soapbark tree (Quillaja saponaria; Rosaceae). To improve our understanding of the biosynthesis of these saponins, a combined polymerase chain reaction and expressed sequence tag approach was taken to identify the genes involved. A cDNA encoding a beta-amyrin synthase (SvBS) was isolated by reverse transcription-polymerase chain reaction and characterized by expression in yeast (Saccharomyces cerevisiae). The SvBS gene is predominantly expressed in leaves. A S. vaccaria developing seed expressed sequence tag collection was developed and used for the isolation of a full-length cDNA bearing sequence similarity to ester-forming glycosyltransferases. The gene product of the cDNA, classified as UGT74M1, was expressed in Escherichia coli, purified, and identified as a triterpene carboxylic acid glucosyltransferase. UGT74M1 is expressed in roots and leaves and appears to be involved in monodesmoside biosynthesis in S. vaccaria.  (+info)

Analysis of gypsogenin saponins in homeopathic tinctures. (4/8)

A relatively simple and short procedure for the quantitative determination of gypsogenin saponins was performed to evaluate homeopathic tinctures in which those compounds can be regarded as one of the active constituents. This method comprises partial hydrolysis of saponins, subsequent extraction of liberated prosaponin (gypsogenin 3-O-glucuronide) and its analysis by high performance liquid chromatography. Glycyrrhizic acid was used as an internal standard. This method was successfully applied to the analysis of mother tinctures obtained from Saponaria officinalis. Thus, the determination of triterpenoid saponins can be used as a convenient and sufficient method of standardization of selected homeopathic tinctures.  (+info)

Transition state analogues rescue ribosomes from saporin-L1 ribosome inactivating protein. (5/8)

 (+info)

Immunotoxins and other conjugates containing saporin-s6 for cancer therapy. (6/8)

 (+info)

Targeted tumor therapy by epidermal growth factor appended toxin and purified saponin: an evaluation of toxicity and therapeutic potential in syngeneic tumor bearing mice. (7/8)

 (+info)

The two-step biosynthesis of cyclic peptides from linear precursors in a member of the plant family Caryophyllaceae involves cyclization by a serine protease-like enzyme. (8/8)

 (+info)