CAG repeat length in the androgen receptor gene of infertile Japanese males with oligozoospermia. (1/975)

We analysed the CAG repeat length in exon 1 of the androgen receptor gene in 59 idiopathic Japanese infertile males with oligozoospermia; 36 fertile males were also analysed as controls. The number of CAG repeats in infertile males ranged from 14 to 32 (mean 21.2+/-4.2), whereas the number of CAG repeats in fertile males ranged from 16 to 31 (mean 21.4+/-3.5). Among infertile males, six possessed a short form of 14 CAG repeats and three possessed 15 CAG repeats. On the other hand, fertile males did not possess the short form of 14 or 15 CAG repeats. The incidence of infertile males with 14 and 15 CAG repeats was significantly higher (P<0.05) than that of fertile males. Although the sample size is small, the results suggest that the reduction of CAG repeats in exon 1 of the androgen receptor is closely related to impaired spermatogenesis in infertile Japanese males.  (+info)

Age of onset in Huntington disease: sex specific influence of apolipoprotein E genotype and normal CAG repeat length. (2/975)

Age of onset (AO) of Huntington disease (HD) is known to be correlated with the length of an expanded CAG repeat in the HD gene. Apolipoprotein E (APOE) genotype, in turn, is known to influence AO in Alzheimer disease, rendering the APOE gene a likely candidate to affect AO in other neurological diseases too. We therefore determined APOE genotype and normal CAG repeat length in the HD gene for 138 HD patients who were previously analysed with respect to CAG repeat length. Genotyping for APOE was performed blind to clinical information. In addition to highlighting the effect of the normal repeat length upon AO in maternally inherited HD and in male patients, we show that the APOE epsilon2epsilon3 genotype is associated with significantly earlier AO in males than in females. Such a sex difference in AO was not apparent for any of the other APOE genotypes. Our findings suggest that subtle differences in the course of the neurodegeneration in HD may allow interacting genes to exert gender specific effects upon AO.  (+info)

Analysis of spinocerebellar ataxia type 2 gene and haplotype analysis: (CCG)1-2 polymorphism and contribution to founder effect. (3/975)

Spinocerebellar ataxia type 2 is a familial spinocerebellar ataxia with autosomal dominant inheritance. The gene responsible was recently cloned and this disorder was found to be the result of a CAG expansion in its open reading frame. We analysed 13 SCA2 patients in seven unrelated families in Gunma Prefecture, Japan. In four of the seven families, we detected CCG or CCGCCG interruptions in only the expanded alleles. Cosegregation of these polymorphisms with SCA2 patients was established within each family. Together with the results of haplotype analyses, we considered that at least two founders were present in our area and that these (CCG)1-2 polymorphisms may make analysis of founder effects easier. By sequencing analysis we found that although the number of the long CAG repeat varied in each subclone of expanded alleles, these polymorphisms did not change their configuration. This finding suggests that CCG or CCGCCG sequences are stable when surrounded by the long CAG repeat and a single CAG. Moreover, the presence of these polymorphisms may lead to miscounting the repeat size by conventional estimation using a size marker such as an M13 sequencing ladder. Therefore we should consider these polymorphisms and accurately determine the repeat size by sequencing.  (+info)

Relationships among electrophysiological findings and clinical status, heart function, and extent of DNA mutation in myotonic dystrophy. (4/975)

BACKGROUND: Impulse-conduction abnormalities and arrhythmias are common in myotonic dystrophy (MD). This study was performed to determine whether a correlation exists between electrophysiological (EP) testing data and clinical status, heart function, or size of the DNA abnormality (cytosine-thymine-guanine sequence repeat). METHODS AND RESULTS: Eighty-three MD patients underwent invasive EP studies prompted primarily by the presence of asymptomatic conduction abnormalities. AV conduction disturbances were common and mainly distal (HV interval, 66.2+/-14 ms). AV conduction observed from the surface ECG was generally concordant with endocardial measurements. However, 11 of 20 patients with normal surface ECGs had abnormal subhisian conduction. Atrial arrhythmias were inducible in 41% of cases and correlated with prolongation of the AH interval (P=0.02) and a shorter atrial refractory period (P=0.04). Induction of ventricular arrhythmias (18%) correlated strongly with age (P=0. 0003). After adjustment for age, the extent of DNA mutation correlated with the Walton score (P=0.0018) but not with conduction abnormalities or induction of arrhythmias. CONCLUSIONS: Prolongation of the HV interval is the most common conduction abnormality in MD and can be reliably recognized only by invasive EP testing. It raises the issue of prophylactic pacing to limit the incidence of sudden death in MD. Atrial and ventricular arrhythmias are often inducible, although their predictive value remains to be determined. Young age emerged as the most powerful predictor of inducible ventricular tachyarrhythmias. Conversely, we found no relationship between ECG or EP abnormalities recorded during invasive testing and the DNA mutation size or severity of peripheral muscle involvement.  (+info)

Mice transgenic for an expanded CAG repeat in the Huntington's disease gene develop diabetes. (5/975)

The autosomal dominant neurological syndrome of Huntington's disease has been modeled in transgenic mice by the expression of a portion of the human huntingtin gene together with 140 CAG repeats (the R6/2 strain). The mice develop progressive chorea with onset at approximately 9 weeks of age and with death at approximately 13 weeks. Associated symptoms include weight loss and polyuria in the absence of eating or drinking deficits. We have found that these mice have insulin-responsive diabetes. Fasting glucose was 211 + 19 mg/dl in R6/2 mice compared with 93 + 5 mg/dl in C57/B6 controls (n = 12, both groups; P < 0.01). Administration of insulin intraperitoneally led to a reduction in blood glucose. At 12.5 weeks, animals were killed and pancreas weighed and analyzed for insulin and glucagon. Pancreatic mass in R6/2 mice was the same as controls, and islets appeared normal in morphology without lymphocytic infiltration. Immunohistochemical staining showed dramatic reductions in glucagon in the alpha-cells and in insulin in the beta-cells. Direct tissue assays showed glucagon and insulin content were reduced to only 10 and 15% of controls, respectively. Diabetes has been reported as being more common in Huntington's disease and other triplet repeat disorders. The R6/2 mouse should prove useful for elucidating the mechanism of diabetes in these genetic diseases.  (+info)

Cleavage of atrophin-1 at caspase site aspartic acid 109 modulates cytotoxicity. (6/975)

Dentatorubropallidoluysian atrophy (DRPLA) is one of eight autosomal dominant neurodegenerative disorders characterized by an abnormal CAG repeat expansion which results in the expression of a protein with a polyglutamine stretch of excessive length. We have reported recently that four of the gene products (huntingtin, atrophin-1 (DRPLA), ataxin-3, and androgen receptor) associated with these open reading frame triplet repeat expansions are substrates for the cysteine protease cell death executioners, the caspases. This led us to hypothesize that caspase cleavage of these proteins may represent a common step in the pathogenesis of each of these four neurodegenerative diseases. Here we present evidence that caspase cleavage of atrophin-1 modulates cytotoxicity and aggregate formation. Cleavage of atrophin-1 at Asp109 by caspases is critical for cytotoxicity because a mutant atrophin-1 that is resistant to caspase cleavage is associated with significantly decreased toxicity. Further, the altered cellular localization within the nucleus and aggregate formation associated with the expanded form of atrophin-1 are completely suppressed by mutation of the caspase cleavage site at Asp109. These results provide support for the toxic fragment hypothesis whereby cleavage of atrophin-1 by caspases may be an important step in the pathogenesis of DRPLA. Therefore, inhibiting caspase cleavage of the polyglutamine-containing proteins may be a feasible therapeutic strategy to prevent cell death.  (+info)

An integrated map of chromosome 18 CAG trinucleotide repeat loci. (7/975)

Expansions of trinucleotide CAG repeats have been demonstrated in at least eight neurodegenerative disorders, and suggested to occur in several others, including bipolar disorder and schizophrenia. Chromosome 18 loci have been implicated in bipolar disorder pedigrees by linkage analysis. To address this putative link between chromosome 18 CAG trinucleotide repeats and neuropsychiatric illness, we have screened a chromosome 18 cosmid library (LL18NCO2" AD") and identified 14 novel candidate loci. Characterisation of these loci involved repeat flank sequencing, estimation of polymorphism frequency and mapping using FISH as well as radiation hybrid panels. These mapped trinucleotide loci will be useful in the investigation of chromosome 18 in neurodegenerative or psychiatric conditions, and will serve to integrate physical and radiation hybrid maps of chromosome 18.  (+info)

A Huntington's disease CAG expansion at the murine Hdh locus is unstable and associated with behavioural abnormalities in mice. (8/975)

Huntington's disease (HD) is a dominant disorder characterized by premature and progressive neurodegeneration. In order to generate an accurate model of the disease, we introduced an HD-like mutation (an extended stretch of 72-80 CAG repeats) into the endogenous mouse Hdh gene. Analysis of the mutation in vivo reveals significant levels of germline instability, with expansions, contractions and sex-of-origin effects in evidence. Mice expressing full-length mutant protein display abnormal social behaviour in the absence of acute neurodegeneration. Given that psychiatric changes, including irritability and aggression, are common findings in HD patients, our data are consistent with the hypothesis that some clinical features of HD may be caused by pathological processes that precede gross neuronal cell death. This implies that effective treatment of HD may require an understanding and amelioration of these dysfunctional processes, rather than simply preventing the premature death of neurons in the brain. These mice should facilitate the investigation of the molecular mechanisms that underpin the pathway from genotype to phenotype in HD.  (+info)