T21/DP107, A synthetic leucine zipper-like domain of the HIV-1 envelope gp41, attracts and activates human phagocytes by using G-protein-coupled formyl peptide receptors. (1/168)

A leucine zipper-like domain, T21/DP107, located in the amino terminus of the ectodomain of gp41, is crucial to the formation of fusogenic configuration of the HIV-1 envelope protein gp41. We report that the synthetic T21/DP107 segment is a potent stimulant of migration and calcium mobilization in human monocytes and neutrophils. The activity of T21/DP107 on phagocytes was pertussis toxin-sensitive, suggesting this peptide uses Gi-coupled seven-transmembrane receptor(s). Since the bacterial chemotactic peptide fMLP partially desensitized the calcium-mobilizing activity of T21/DP107 in phagocytes, we postulated that T21/DP107 might preferentially use a lower affinity fMLP receptor. By using cells transfected to express cloned prototype chemotactic N-formyl peptide receptor (FPR) or its variant, FPR-like 1 (FPRL1), we demonstrate that T21/DP107 activates both receptors but has a much higher efficacy for FPRL1. In addition, T21/DP107 at nM concentrations induced migration of FPRL1-transfected human embryonic kidney 293 cells. In contrast, fMLP did not induce significant chemotaxis of the same cells at a concentration as high as 50 microM. Although a lipid metabolite, lipoxin A4, was a high-affinity ligand for FPRL1, it was not reported to induce Ca2+ mobilization or chemotaxis in FPRL1-transfected cells. Therefore, T21/DP107 is a first chemotactic peptide agonist identified thus far for FPRL1. Our results suggest that this peptide domain of the HIV-1 gp41 may have the potential to activate host innate immune response by interacting with FPR and FPRL1 on phagocytes.  (+info)

Lipoxin (LX)A4 and aspirin-triggered 15-epi-LXA4 inhibit tumor necrosis factor 1alpha-initiated neutrophil responses and trafficking: regulators of a cytokine-chemokine axis. (2/168)

The impact of lipoxin A4 (LXA4) and aspirin-triggered lipoxins (ATLs) was investigated in tumor necrosis factor (TNF)-alpha-initiated neutrophil (polymorphonuclear leukocyte) responses in vitro and in vivo using metabolically stable LX analogues. At concentrations as low as 1-10 nM, the LXA4 and ATL analogues each inhibited TNF-alpha-stimulated superoxide anion generation and IL-1beta release by human polymorphonuclear leukocytes. These LXA4-ATL actions were time and concentration dependent and proved selective for TNF-alpha, as these responses were not altered with either GM-CSF- or zymosan-stimulated cells. TNF-alpha-induced IL-1beta gene expression was also regulated by both anti-LXA4 receptor antibodies and LXA4-ATL analogues. In murine air pouches, 15R/S-methyl-LXA4 dramatically inhibited TNF-alpha-stimulated leukocyte trafficking, as well as the appearance of both macrophage inflammatory peptide 2 and IL-1beta, while concomitantly stimulating IL-4 in pouch exudates. Together, these results indicate that both LXA4 and ATL regulate TNF-alpha-directed neutrophil actions in vitro and in vivo and stimulate IL-4 in exudates, playing a pivotal role in immune responses.  (+info)

Leukotriene B4 receptor transgenic mice reveal novel protective roles for lipoxins and aspirin-triggered lipoxins in reperfusion. (3/168)

Polymorphonuclear neutrophil (PMN) activation is pivotal in acute inflammation and injury from reperfusion. To elucidate components controlling PMNs in vivo, we prepared novel transgenic mice with the human leukotriene (LT) B4 receptor (BLTR) for functional characterization. Overexpression of BLTR in leukocytes dramatically increased PMN trafficking to skin microabscesses and lungs after ischemia-reperfusion, whereas mice deficient in 5-lipoxygenase (5-LO) showed diminished PMN accumulation in reperfused lungs. Hence, both BLTR expression and LT biosynthesis are critical for PMN infiltration in reperfusion-initiated second-organ injury. Also, in BLTR transgenic mice, 5-LO expression and product formation were selectively increased in exudates, demonstrating that receptor overexpression amplifies proinflammatory circuits. Endogenous lipoxin (LX) A4 was produced in ischemic lungs and elevated by reperfusion. Because LXA4 and aspirin-triggered 15-epimeric LXA4 (ATL) selectively regulate leukocyte responses, they were tested in BLTR transgenic mice. Despite excessive PMN recruitment in BLTR transgenic mice, intravenous injection of ATL sharply diminished reperfusion-initiated PMN trafficking to remote organs, and topical application of LX was protective in acute dermal inflammation. These results demonstrate a direct role for BLTR with positive feedback, involving BLTR and 5-LO signaling in controlling PMNs. Moreover, LXA4 and ATL counter BLTR-amplified networks, revealing a novel protective role for LX and ATL in stress responses that has applications in perioperative medicine.  (+info)

A synthetic peptide derived from human immunodeficiency virus type 1 gp120 downregulates the expression and function of chemokine receptors CCR5 and CXCR4 in monocytes by activating the 7-transmembrane G-protein-coupled receptor FPRL1/LXA4R. (4/168)

Because envelope gp120 of various strains of human immunodeficiency virus type 1 (HIV-1) downregulates the expression and function of a variety of chemoattractant receptors through a process of heterologous desensitization, we investigated whether epitopes derived from gp120 could mimic the effect. A synthetic peptide domain, designated F peptide, corresponding to amino acid residues 414-434 in the V4-C4 region of gp120 of the HIV-1 Bru strain, potently reduced monocyte binding and chemotaxis response to macrophage inflammatory protein 1beta (MIP-1beta) and stromal cell-derived factor 1alpha (SDF-1alpha), chemokines that use the receptors CCR5 and CXCR4, respectively. Further study showed that F peptide by itself is an inducer of chemotaxis and calcium mobilization in human monocytes and neutrophils. In cross-desensitization experiments, among the numerous chemoattractants tested, only the bacterial chemotactic peptide fMLF, when used at high concentrations, partially attenuated calcium mobilization induced by F peptide in phagocytes, suggesting that this peptide domain might share a 7-transmembrane, G-protein-coupled receptor with fMLF. By using cells transfected with cDNAs encoding receptors that interact with fMLF, we found that F peptide uses an fMLF receptor variant, FPRL1, as a functional receptor. The activation of monocytes by F peptide resulted in downregulation of the cell surface expression of CCR5 and CXCR4 in a protein kinase C-dependent manner. These results demonstrate that activation of FPRL1 on human moncytes by a peptide domain derived from HIV-1 gp120 could lead to desensitization of cell response to other chemoattractants. This may explain, at least in part, the initial activation of innate immune responses in HIV-1-infected patients followed by immune suppression.  (+info)

Utilization of two seven-transmembrane, G protein-coupled receptors, formyl peptide receptor-like 1 and formyl peptide receptor, by the synthetic hexapeptide WKYMVm for human phagocyte activation. (5/168)

Trp-Lys-Tyr-Val-D-Met (WKYMVm) is a synthetic leukocyte-activating peptide postulated to use seven-transmembrane, G protein-coupled receptor(s). In the study to characterize the receptor(s) for WKYMVm, we found that this peptide induced marked chemotaxis and calcium flux in human phagocytes. The signaling induced by WKYMVm in phagocytes was attenuated by high concentrations of the bacterial chemotactic peptide fMLP, suggesting that WKYMVm might use receptor(s) for fMLP. This hypothesis was tested by using cells over expressing genes encoding two seven-transmembrane receptors, formyl peptide receptor (FPR) and formyl peptide receptor-like 1 (FPRL1), which are with high and low affinity for fMLP, respectively. Both FPR- and FPRL1-expressing cells mobilized calcium in response to picomolar concentrations of WKYMVm. While FPRL1-expressing cells migrated to picomolar concentrations of WKYMVm, nanomolar concentrations of the peptide were required to induce migration of FPR-expressing cells. In contrast, fMLP elicited both calcium flux and chemotaxis only in FPR-expressing cells with an efficacy comparable with WKYMVm. Thus, WKYMVm uses both FPR and FPRL1 to stimulate phagocytes with a markedly higher efficacy for FPRL1. Our study suggests that FPR and FPRL1 in phagocytes react to a broad spectrum of agonists and WKYMVm as a remarkably potent agonist provides a valuable tool for studying leukocyte signaling via these receptors.  (+info)

Lipoxin A4 inhibits IL-1 beta-induced IL-6, IL-8, and matrix metalloproteinase-3 production in human synovial fibroblasts and enhances synthesis of tissue inhibitors of metalloproteinases. (6/168)

Lipoxins are a novel class of endogenous eicosanoid mediators that potently inhibit inflammatory events by signaling via specific receptors expressed on phagocytic cells. Animal models have shown that lipoxin A4 (LXA4) down-regulates inflammation in vivo. Here we demonstrate, for the first time, the expression of LXA4 receptors, and their up-regulation by IL-1 beta, in normal human synovial fibroblasts (SF). We examined whether exogenous LXA4 abrogated IL-1 beta stimulation of SF in vitro. IL-1 beta induced the synthesis of IL-6, IL-8, and matrix metalloproteinases (MMP)-1 and -3. At nanomolar concentrations, LXA4 inhibited these IL-1 beta responses with reduction of IL-6 and IL-8 synthesis, by 45 +/- 7% and 75 +/- 11%, respectively, and prevented IL-1 beta-induced MMP-3 synthesis without significantly affecting MMP-1 levels. Furthermore, LXA4 induced a 2-fold increase of tissue inhibitor of metalloproteinase (TIMP)-1 and a approximately 3-fold increase of TIMP-2 protein levels. LXA4 inhibitory responses were dose dependent and were abrogated by pretreatment with LXA4 receptor antiserum. LXA4-induced changes of IL-6 and TIMP were accompanied by parallel changes in mRNA levels. These results indicate that LXA4 in activated SF inhibits the synthesis of inflammatory cytokines and MMP and stimulates TIMP production in vitro. These findings suggest that LXA4 may be involved in a negative feedback loop opposing inflammatory cytokine-induced activation of SF.  (+info)

The synthetic chemoattractant Trp-Lys-Tyr-Met-Val-DMet activates neutrophils preferentially through the lipoxin A(4) receptor. (7/168)

A D-methionine-containing peptide, Trp-Lys-Tyr-Met-Val-D-Met-NH(2) (WKYMVm), featuring a unique receptor specificity was investigated with respect to its ability to activate neutrophil effector functions. The peptide was found to be more potent than the N-formylated peptide N-formyl-Met-Leu-Phe (fMLF) at inducing neutrophil chemotaxis, mobilization of neutrophil complement receptor 3 (CR3), and activation of the neutrophil NADPH-oxidase. The fact that binding of fML[(3)H]F was inhibited by both fMLF and WKYMVm suggests that N-formyl peptide receptor (FPR) is shared by these peptides. However, the neutrophil response induced by the WKYMVm peptide was insensitive to the fMLF antagonists, cyclosporin H, and Boc-FLFLF that specifically block the function of the FPR. These results suggest that even though WKYMVm may bind FPR the cells are activated preferentially through a receptor distinct from the FPR. Using transfected HL-60 cells expressing either the FPR or its neutrophil homologue FPRL1, also referred to as LXA(4)R because it has been shown to bind lipoxin A(4), we show that WKYMVm is about 300-fold more active at mobilizing intracellular calcium through FPRL1 than through FPR. The WKYMVm activates FPRL1-expressing cells in a cyclosporin H-independent manner with an EC(50 )of around 75 pmol/L, whereas it activates FPR-expressing cells with an EC(50 )of around 25 nmol/L. The observation that exudated cells are primed in their response to WKYMVm suggests that FPRL1/LXA(4)R like FPR is stored in mobilizable organelles. (Blood. 2000;95:1810-1818)  (+info)

Activation of lipoxin A(4) receptors by aspirin-triggered lipoxins and select peptides evokes ligand-specific responses in inflammation. (8/168)

Lipoxin (LX) A(4) and aspirin-triggered LX (ATL) are endogenous lipids that regulate leukocyte trafficking via specific LXA(4) receptors (ALXRs) and mediate antiinflammation and resolution. ATL analogues dramatically inhibited human neutrophil (polymorphonuclear leukocyte [PMN]) responses evoked by a potent necrotactic peptide derived from mitochondria as well as a rogue synthetic chemotactic peptide. These bioactive lipid analogues and small peptides each selectively competed for specific (3)H-LXA(4) binding with recombinant human ALXR, and its N-glycosylation proved essential for peptide but not LXA(4) recognition. Chimeric receptors constructed from receptors with opposing functions, namely ALXR and leukotriene B(4) receptors (BLTs), revealed that the seventh transmembrane segment and adjacent regions of ALXR are essential for LXA(4) recognition, and additional regions of ALXR are required for high affinity binding of the peptide ligands. Together, these findings are the first to indicate that a single seven-transmembrane receptor can switch recognition as well as function with certain chemotactic peptides to inhibitory with ATL and LX (lipid ligands). Moreover, they suggest that ALXR activation by LX or ATL can protect the host from potentially deleterious PMN responses associated with innate immunity as well as direct effector responses in tissue injury by recognition of peptide fragments.  (+info)