O-raffinose cross-linking markedly reduces systemic and renal vasoconstrictor effects of unmodified human hemoglobin. (1/310)

The hemodynamic effects of a 20% exchange-transfusion with different solutions of highly purified human hemoglobin A-zero (A0) were evaluated. We compared unmodified hemoglobin with hemoglobin cross-linked with O-raffinose. Unmodified hemoglobin increased systemic vascular resistance and mean arterial pressure more than the O-raffinose cross-linked hemoglobin solution (by approximately 45% and approximately 14%, respectively). Unmodified hemoglobin markedly reduced cardiac output (CO) by approximately 21%, whereas CO was unaffected by the O-raffinose cross-linked hemoglobin solution. Unmodified and O-raffinose cross-linked hemoglobin solutions increased mean arterial pressure to comparable extents ( approximately 14% and approximately 9%, respectively). Unmodified hemoglobin increased renal vascular resistance 2-fold and reduced the glomerular filtration rate by 58%. In marked contrast, the O-raffinose cross-linked hemoglobin had no deleterious effect on the glomerular filtration rate, renal blood flow, or renal vascular resistance. The extents to which unmodified and O-raffinose cross-linked hemoglobin solutions inactivated nitric oxide also were compared using three separate in vitro assays: platelet nitric oxide release, nitric oxide-stimulated platelet cGMP production, and endothelium-derived relaxing factor-mediated inhibition of platelet aggregation. Unmodified hemoglobin inactivated or oxidized nitric oxide to a greater extent than the O-raffinose cross-linked hemoglobin solutions in all three assays. In summary, O-raffinose cross-linking substantially reduced the systemic vasoconstriction and the decrease in CO induced by unmodified hemoglobin and eliminated the deleterious effects of unmodified hemoglobin on renal hemodynamics and function. We hypothesize that O-raffinose cross-linking reduces the degree of oxidation of nitric oxide and that this contributes to the reduced vasoactivity of this modified hemoglobin.  (+info)

Decreased lactic acidosis and anemia after transfusion of o-raffinose cross-linked and polymerized hemoglobin in severe murine malaria. (2/310)

Severe anemia is a major cause of death in falciparum malaria. Blood transfusion increases survival in humans and in animal models of this disease. Because of logistic constraints and viral contamination of the blood supply, transfusions are frequently not practical in endemic regions. Modified hemoglobin is an effective O2 carrier in hemorrhagic shock. It is free of infectious contamination, may not require refrigeration, and because of its nitric oxide scavenging and small size, may have pharmacologic benefits in malaria. The effects of transfusions of modified hemoglobin in rats with high-grade parasitemia were evaluated. Modified hemoglobin decreased lactic acidosis and corrected anemia as well as transfusions with red blood cells; these findings may correlate with improved survival and suggest a possible proerythropoietic effect. Further study of this novel therapy is warranted.  (+info)

Intravenous glycine improves survival in rat liver transplantation. (3/310)

In situ manipulation by touching, retracting, and moving liver lobes gently during harvest dramatically reduces survival after transplantation (P. Schemmer, R. Schoonhoven, J. A. Swenberg, H. Bunzendahl, and R. G. Thurman. Transplantation 65: 1015-1020, 1998). The development of harvest-dependent graft injury upon reperfusion can be prevented with GdCl3, a rare earth metal and Kupffer cell toxicant, but it cannot be used in clinical liver transplantation because of its potential toxicity. Thus the effect of glycine, which prevents activation of Kupffer cells, was assessed here. Minimal dissection of the liver for 12 min plus 13 min without manipulation had no effect on survival (100%). However, gentle manipulation decreased survival to 46% in the control group. Furthermore, serum transaminases and liver necrosis were elevated 4- to 12-fold 8 h after transplantation. After organ harvest, the rate of entry and exit of fluorescein dextran, a dye confined to the vascular space, was decreased about twofold, indicating disturbances in the hepatic microcirculation. Pimonidazole binding, which detects hypoxia, increased about twofold after organ manipulation, and Kupffer cells isolated from manipulated livers produced threefold more tumor necrosis factor-alpha after lipopolysaccharide than controls. Glycine given intravenously to the donor increased the serum glycine concentration about sevenfold and largely prevented the effect of gentle organ manipulation on all parameters studied. These data indicate for the first time that pretreatment of donors with intravenous glycine minimizes reperfusion injury due to organ manipulation during harvest and after liver transplantation.  (+info)

Evidence for the involvement of the Glc7-Reg1 phosphatase and the Snf1-Snf4 kinase in the regulation of INO1 transcription in Saccharomyces cerevisiae. (4/310)

Binding of the TATA-binding protein (TBP) to the promoter is a pivotal step in RNA polymerase II transcription. To identify factors that regulate TBP, we selected for suppressors of a TBP mutant that exhibits promoter-specific defects in activated transcription in vivo and severely reduced affinity for TATA boxes in vitro. Dominant mutations in SNF4 and recessive mutations in REG1, OPI1, and RTF2 were isolated that specifically suppress the inositol auxotrophy of the TBP mutant strains. OPI1 encodes a repressor of INO1 transcription. REG1 and SNF4 encode regulators of the Glc7 phosphatase and Snf1 kinase, respectively, and have well-studied roles in glucose repression. In two-hybrid assays, one SNF4 mutation enhances the interaction between Snf4 and Snf1. Suppression of the TBP mutant by our reg1 and SNF4 mutations appears unrelated to glucose repression, since these mutations do not alleviate repression of SUC2, and glucose levels have little effect on INO1 transcription. Moreover, mutations in TUP1, SSN6, and GLC7, but not HXK2 and MIG1, can cause suppression. Our data suggest that association of TBP with the TATA box may be regulated, directly or indirectly, by a substrate of Snf1. Analysis of INO1 transcription in various mutant strains suggests that this substrate is distinct from Opi1.  (+info)

Hypertonicity stimulates taurine uptake and transporter gene expression in Caco-2 cells. (5/310)

The osmoregulation of taurine transport in intestinal epithelial cells was investigated using human intestinal Caco-2 cells. The activity of taurine transport in the Caco-2 cells was increased by hypertonic conditions. This hypertonicity-induced up-regulation was dependent on both the culturing time and the osmotic pressure. Hypertonicity did not affect the activity of L-leucine, L-lysine, or L-glutamic acid transport, suggesting that osmoregulation was specific to taurine transport. The intracellular taurine content of Caco-2 cells was also increased by culturing in a hypertonic medium. These hypertonicity-induced changes in the intracellular taurine content and transport activity were reversible. A kinetic analysis of taurine transport in the control and hypertonic cells suggested that the up-regulation was associated with an increase in the amount of the taurine transporter. The mRNA level of the taurine transporter in hypertonic cells was markedly higher than that in the control cells, indicating that this osmotic regulation was due to the increased expression of the taurine transporter gene.  (+info)

Organ preservation solutions increase endothelial permeability and promote loss of junctional proteins. (6/310)

OBJECTIVE: To investigate the effects of the organ preservation solutions UW and Plegisol on endothelial permeability; occludin and vascular endothelial (VE)-cadherin content in human umbilical vein endothelial cells (HUVEC); and junctional localization of these proteins after exposure to these solutions. SUMMARY BACKGROUND DATA: Organ preservation for transplantation is limited by several challenges, including loss of tissue function, tissue injury, and tissue edema. Occludin and VE-cadherin are responsible for maintaining and regulating the endothelial solute barrier. Several studies have noted organ edema and dysfunction with preservation, as well as gaps between endothelial cells suggesting that disorganization of junctional proteins (e.g., occludin and VE-cadherin) is responsible for interstitial edema. METHODS: HUVEC monolayers were treated with 4 degrees C UW and Plegisol for 3 and 6 hours and then reperfused with normal buffer. Permeability was examined using FITC-dextran tracer during the reperfusion phase. Occludin and VE-cadherin content at different time points was measured by Western blotting. Treated groups were also examined by immunofluorescence for occludin, VE-cadherin, and F-actin. RESULTS: Compared with untreated controls, cold preservation for 3 and 6 hours increased endothelial permeability after rewarming, which appears to depend on the duration of cold exposure. Monolayers exposed to 3 hours of cold preservation did not have increased permeability in the first hour after rewarming but had significantly increased permeability after the first hour and all subsequent time points. Monolayers exposed to 6 hours of cold preservation had increased permeability after the first hour and at all later time points. Western blotting demonstrated that occludin content was decreased to a similar extent with all solutions after 3 hours of cold preservation. Six hours of cold preservation in Plegisol reduced the occludin content significantly compared with UW and control. VE-cadherin content was unchanged after 3 hours of cold preservation but was dramatically reduced in all groups at 6 hours. Immunofluorescent staining demonstrated junctional gap formation and discontinuous staining of occludin and VE-cadherin with all cold preservation protocols; changes in F-actin organization were observed at 3 and 6 hours after cold preservation. CONCLUSION: The changes in occludin, VE-cadherin, and F-actin content and organization and increased permeability associated with cold storage demonstrate that alterations of the tight and adherens junctions may underlie organ edema associated with cold organ preservation. These data also suggest that novel strategies to maintain the content and integrity of endothelial junctional proteins may provide an important therapeutic avenue for organ preservation.  (+info)

Cold preservation of the human colon and ileum with University of Wisconsin solution. (7/310)

The inclusion of the colon in the intestinal graft resulted in worsening patient and graft outcome and increased the incidence of infection and rejection. In this study, we examine the role of ischemia on the barrier function of the epithelium during cold ischemia. Samples were collected from 15 harvested and transplanted human donor grafts (colon, 10; ileum, 6), which were immersed in University of Wisconsin (UW) solution. Ischemia (6, 12, 24, and 48 h) and reoxygenation were performed to evaluate the mucosal electrical status using the Ussing chamber technique. The functions of enterocytes and crypt cells were tested by glucose and theophylline challenge. Modified Park's classification was applied to evaluate the severity of mucosal damage under light microscopy. The colon had higher levels of baseline potential difference, short-circuit current, and resistance than the ileum during 6 48 h of ischemia. Colonic epithelial cells responded well to theophylline stimulation at 24 h of ischemia, while there was no ileal response. The colonic mucosa was histopathologically well preserved in UW solution for 48 h, and mucosal damage induced by reoxygenation was less than in the ileum. In conclusion, electrophysiologically and histopathologically, the colon is less susceptible to cold preservation damage than the ileum during storage with UW solution.  (+info)

Regulation of the alpha-galactosidase activity in Streptococcus pneumoniae: characterization of the raffinose utilization system. (8/310)

A 10.2-kb gene region was identified in the Streptococcus pneumoniae genome sequence that contains eight genes involved in regulation and metabolism of raffinose. The genes rafR and rafS are transcribed as one operon, and their gene products regulate the raffinose-dependent stimulation of a divergently transcribed second promoter (P(A)) directing the expression of aga, the structural gene for alpha-galactosidase. Raffinose-mediated transcription from P(A) results in a 500-fold increase in alpha-galactosidase activity in the cell. A third promoter within the cluster is responsible for the transcription of the remaining five genes (rafE, rafF, rafG, gtfA, and rafX), whose gene products might be involved in transport and metabolism of raffinose. The presence of additional internal promoters cannot be excluded. The aga promoter P(A) is negatively regulated by the presence of sucrose in the growth medium. Consistent with catabolite repression (CR), a DNA sequence with high homology to the CRE (cis-active element) was identified upstream of the aga promoter. Sucrose-mediated CR depends on the phosphoenolpyruvate: sucrose phosphotransferase system (PTS) but is unaffected by a mutation in a gene encoding a homolog of the CRE regulatory protein CcpA.  (+info)