A modulatory role for clathrin light chain phosphorylation in Golgi membrane protein localization during vegetative growth and during the mating response of Saccharomyces cerevisiae. (57/25200)

The role of clathrin light chain phosphorylation in regulating clathrin function has been examined in Saccharomyces cerevisiae. The phosphorylation state of yeast clathrin light chain (Clc1p) in vivo was monitored by [32P]phosphate labeling and immunoprecipitation. Clc1p was phosphorylated in growing cells and also hyperphosphorylated upon activation of the mating response signal transduction pathway. Mating pheromone-stimulated hyperphosphorylation of Clc1p was dependent on the mating response signal transduction pathway MAP kinase Fus3p. Both basal and stimulated phosphorylation occurred exclusively on serines. Mutagenesis of Clc1p was used to map major phosphorylation sites to serines 52 and 112, but conversion of all 14 serines in Clc1p to alanines [S(all)A] was necessary to eliminate phosphorylation. Cells expressing the S(all)A mutant Clc1p displayed no defects in Clc1p binding to clathrin heavy chain, clathrin trimer stability, sorting of a soluble vacuolar protein, or receptor-mediated endocytosis of mating pheromone. However, the trans-Golgi network membrane protein Kex2p was not optimally localized in mutant cells. Furthermore, pheromone treatment exacerbated the Kex2p localization defect and caused a corresponding defect in Kex2p-mediated maturation of the alpha-factor precursor. The results reveal a novel requirement for clathrin during the mating response and suggest that phosphorylation of the light chain subunit modulates the activity of clathrin at the trans-Golgi network.  (+info)

Interaction of the Doa4 deubiquitinating enzyme with the yeast 26S proteasome. (58/25200)

e Saccharomyces cerevisiae Doa4 deubiquitinating enzyme is required for the rapid degradation of protein substrates of the ubiquitin-proteasome pathway. Previous work suggested that Doa4 functions late in the pathway, possibly by deubiquitinating (poly)-ubiquitin-substrate intermediates associated with the 26S proteasome. We now provide evidence for physical and functional interaction between Doa4 and the proteasome. Genetic interaction is indicated by the mutual enhancement of defects associated with a deletion of DOA4 or a proteasome mutation when the two mutations are combined. Physical association of Doa4 and the proteasome was investigated with a new yeast 26S proteasome purification procedure, by which we find that a sizeable fraction of Doa4 copurifies with the protease. Another yeast deubiquitinating enzyme, Ubp5, which is related in sequence to Doa4 but cannot substitute for it even when overproduced, does not associate with the proteasome. DOA4-UBP5 chimeras were made by a novel PCR/yeast recombination method and used to identify an N-terminal 310-residue domain of Doa4 that, when appended to the catalytic domain of Ubp5, conferred Doa4 function, consistent with Ubp enzymes having a modular architecture. Unlike Ubp5, a functional Doa4-Ubp5 chimera associates with the proteasome, suggesting that proteasome binding is important for Doa4 function. Together, these data support a model in which Doa4 promotes proteolysis through removal of ubiquitin from proteolytic intermediates on the proteasome before or after initiation of substrate breakdown.  (+info)

Epidermal growth factor regulates fatty acid uptake and metabolism in Caco-2 cells. (59/25200)

Epidermal growth factor (EGF) has been reported to stimulate carbohydrate, amino acid, and electrolyte transport in the small intestine, but its effects on lipid transport are poorly documented. This study aimed to investigate EGF effects on fatty acid uptake and esterification in a human enterocyte cell line (Caco-2). EGF inhibited cell uptake of [14C]palmitate and markedly reduced its incorporation into triglycerides. In contrast, the incorporation in phospholipids was enhanced. To elucidate the mechanisms involved, key steps of lipid synthesis were investigated. The amount of intestinal fatty acid-binding protein (I-FABP), which is thought to be important for fatty acid absorption, and the activity of diacylglycerol acyltransferase (DGAT), an enzyme at the branch point of diacylglycerol utilization, were reduced. EGF effects on DGAT and on palmitate esterification occurred at 2-10 ng/ml, whereas effects on I-FABP and palmitate uptake occurred only at 10 ng/ml. This suggests that EGF inhibited palmitate uptake by reducing the I-FABP level and shifted its utilization from triglycerides to phospholipids by inhibiting DGAT. This increase in phospholipid synthesis might play a role in the restoration of enterocyte absorption function after intestinal mucosa injury.  (+info)

The conserved protein kinase Ipl1 regulates microtubule binding to kinetochores in budding yeast. (60/25200)

Chromosome segregation depends on kinetochores, the structures that mediate chromosome attachment to the mitotic spindle. We isolated mutants in IPL1, which encodes a protein kinase, in a screen for budding yeast mutants that have defects in sister chromatid separation and segregation. Cytological tests show that ipl1 mutants can separate sister chromatids but are defective in chromosome segregation. Kinetochores assembled in extracts from ipl1 mutants show altered binding to microtubules. Ipl1p phosphorylates the kinetochore component Ndc10p in vitro and we propose that Ipl1p regulates kinetochore function via Ndc10p phosphorylation. Ipl1p localizes to the mitotic spindle and its levels are regulated during the cell cycle. This pattern of localization and regulation is similar to that of Ipl1p homologs in higher eukaryotes, such as the human aurora2 protein. Because aurora2 has been implicated in oncogenesis, defects in kinetochore function may contribute to genetic instability in human tumors.  (+info)

Regulation of Saccharomyces cerevisiae kinetochores by the type 1 phosphatase Glc7p. (61/25200)

We have investigated the role of protein phosphorylation in regulation of Saccharomyces cerevisiae kinetochores. By use of phosphatase inhibitors and a type 1 protein phosphatase mutant (glc7-10), we show that the microtubule binding activity, but not the centromeric DNA-binding activity, of the kinetochore complex is regulated by a balance between a protein kinase and the type 1 protein phosphatase (PP1) encoded by the GLC7 gene. glc7-10 mutant cells exhibit low kinetochore-microtubule binding activity in vitro and a high frequency of chromosome loss in vivo. Specifically, the Ndc10p component of the centromere DNA-binding CBF3 complex is altered by the glc7-10 mutation; Ndc10p is hyperphosphorylated in glc7-10 extracts. Furthermore, addition of recombinant Ndc10p reconstitutes the microtubule-binding activity of a glc7-10 extract to wild-type levels. Finally, the glc7-10-induced mitotic arrest is abolished in spindle checkpoint mutants, suggesting that defects in kinetochore-microtubule interactions caused by hyperphosphorylation of kinetochore proteins activate the spindle checkpoint.  (+info)

Interaction of the U1 snRNP with nonconserved intronic sequences affects 5' splice site selection. (62/25200)

Intron definition and splice site selection occur at an early stage during assembly of the spliceosome, the complex mediating pre-mRNA splicing. Association of U1 snRNP with the pre-mRNA is required for these early steps. We report here that the yeast U1 snRNP-specific protein Nam8p is a component of the commitment complexes, the first stable complexes assembled on pre-mRNA. In vitro and in vivo, Nam8p becomes indispensable for efficient 5' splice site recognition when this process is impaired as a result of the presence of noncanonical 5' splice sites or the absence of a cap structure. Nam8p stabilizes commitment complexes in the latter conditions. Consistent with this, Nam8p interacts with the pre-mRNA downstream of the 5' splice site, in a region of nonconserved sequence. Substitutions in this region affect splicing efficiency and alternative splice site choice in a Nam8p-dependent manner. Therefore, Nam8p is involved in a novel mechanism by which a snRNP component can affect splice site choice and regulate intron removal through its interaction with a nonconserved sequence. This supports a model where early 5' splice recognition results from a network of interactions established by the splicing machinery with various regions of the pre-mRNA.  (+info)

Use of the Gal4-UAS technique for targeted gene expression in the zebrafish. (63/25200)

The most common way to analyze the function of cloned genes in zebrafish is to misexpress the gene product or an altered variant of it by mRNA injection. However, mRNA injection has several disadvantages. The GAL4-UAS system for targeted gene expression allows one to overcome some of these disadvantages. To test the GAL4-UAS system in zebrafish, we generated two different kinds of stable transgenic lines, carrying activator and effector constructs, respectively. In the activator lines the gene for the yeast transcriptional activator GAL4 is under the control of a given promoter, while in the effectors the gene of interest is fused to the sequence of the DNA-binding motif of GAL4 (UAS). Crosses of animals from the activator and effector lines show that effector genes are transcribed with the spatial pattern of the activators. This work smoothes the way for a novel method of misexpression of gene products in zebrafish in order to analyze the function of genes in developmental processes.  (+info)

Uracil-induced down-regulation of the yeast uracil permease. (64/25200)

In Saccharomyces cerevisiae the FUR4-encoded uracil permease catalyzes the first step of the pyrimidine salvage pathway. The availability of uracil has a negative regulatory effect upon its own transport. Uracil causes a decrease in the level of uracil permease, partly by decreasing the FUR4 mRNA level in a promoter-independent fashion, probably by increasing its instability. Uracil entry also triggers more rapid degradation of the existing permease by promoting high efficiency of ubiquitination of the permease that signals its internalization. A direct binding of intracellular uracil to the permease is possibly involved in this feedback regulation, as the behavior of the permease is similar in mutant cells unable to convert intracellular uracil into UMP. We used cells impaired in the ubiquitination step to show that the addition of uracil produces rapid inhibition of uracil transport. This may be the first response prior to the removal of the permease from the plasma membrane. Similar down-regulation of uracil uptake, involving several processes, was observed under adverse conditions mainly corresponding to a decrease in the cellular content of ribosomes. These results suggest that uracil of exogenous or catabolic origin down-regulates the cognate permease to prevent buildup of excess intracellular uracil-derived nucleotides.  (+info)