Regulatory effects of endogenous protease inhibitors in acute lung inflammatory injury. (1/348)

Inflammatory lung injury is probably regulated by the balance between proteases and protease inhibitors together with oxidants and antioxidants, and proinflammatory and anti-inflammatory cytokines. Rat tissue inhibitor of metalloprotease-2 (TIMP-2) and secreted leukoprotease inhibitor (SLPI) were cloned, expressed, and shown to be up-regulated at the levels of mRNA and protein during lung inflammation in rats induced by deposition of IgG immune complexes. Using immunoaffinity techniques, endogenous TIMP-2 in the inflamed lung was shown to exist as a complex with 72- and 92-kDa metalloproteinases (MMP-2 and MMP-9). In inflamed lung both TIMP-2 and SLPI appeared to exist as enzyme inhibitor complexes. Lung expression of both TIMP-2 and SLPI appeared to involve endothelial and epithelial cells as well as macrophages. To assess how these endogenous inhibitors might affect the lung inflammatory response, animals were treated with polyclonal rabbit Abs to rat TIMP-2 or SLPI. This intervention resulted in significant intensification of lung injury (as revealed by extravascular leak of albumin) and substantially increased neutrophil accumulation, as determined by cell content in bronchoalveolar lavage (BAL) fluids. These events were correlated with increased levels of C5a-related chemotactic activity in BAL fluids, while BAL levels of TNF-alpha and chemokines were not affected by treatment with anti-TIMP-2 or anti-SLPI. The data suggest that endogenous TIMP-2 and SLPI dynamically regulate the intensity of lung inflammatory injury, doing so at least in part by affecting the generation of the inflammatory mediator, C5a.  (+info)

Endogenous mucosal antiviral factors of the oral cavity. (2/348)

The oral cavity represents a unique site for mucosal transmission of human immunodeficiency virus type 1 (HIV-1). Unlike other mucosal sites, the oral cavity is rarely a site of HIV transmission despite detectable virus in saliva and oropharyngeal tissues of infected persons. One reason for this apparent paradox is the presence of endogenous mucosal antiviral factors. Innate inhibitory molecules, such as virus-specific antibodies, mucins, thrombospondin, and soluble proteins, have been identified and partially characterized from saliva. A recent addition to the growing list is secretory leukocyte protease inhibitor (SLPI), an approximately 12-kDa non-glycosylated protein found in serous secretions. Physiologic concentrations of SLPI potently protect adherent monocytes and activated peripheral blood mononuclear cells against HIV-1 infection. SLPI levels in saliva and semen but not breast milk approximate levels required for inhibition in vitro. Characterization of SLPI and other endogenous antiviral molecules may enhance our understanding of factors influencing mucosal HIV-1 transmission.  (+info)

Targeted overexpression of elafin protects mice against cardiac dysfunction and mortality following viral myocarditis. (3/348)

Serine elastases degrade elastin, stimulate vascular smooth muscle cell migration and proliferation, and are associated with myocardial damage. To evaluate the impact of elastase inhibition on cardiovascular development and disease, transgenic mice were created in which the mouse preproendothelin-1 promoter was used to target elafin overexpression to the cardiovascular system. To distinguish the transgene from endogenous elafin, constructs were made incorporating a FLAG sequence; the COOH-terminus FLAG-tagged elafin construct produced a stable, functionally active gene product and was used to create transgenic mice. Consistent with endothelin expression, abundant elafin mRNA was observed in transgenic F1 embryos (embryonic day 13.5) and in adult transgenic mice heart, trachea, aorta, kidney, lung, and skin, but not in liver, spleen, and intestine. Functional activity of the transgene was confirmed by heightened myocardial elastase inhibitory activity. No tissue abnormalities were detected by light microscopy or elastin content. However, injection of 10 plaque-forming units (PFU) of encephalomyocarditis virus resulted in death within 11 days in 10 out of 12 nontransgenic mice compared with one out of nine transgenic littermates. This reduced mortality was associated with better cardiac function and less myocardial inflammatory damage. Thus, elafin expression may confer a protective advantage in myocarditis and other inflammatory diseases.  (+info)

Secretory leukocyte protease inhibitor prevents allergen-induced pulmonary responses in animal models of asthma. (4/348)

Secretory leukocyte protease inhibitor (SLPI) is a naturally occurring protein of human airways that exhibits broad spectrum inhibitory activity against mast cell and leukocyte serine proteases implicated in asthma pathology. To assess the potential therapeutic utility of SLPI in this disorder, its effects on antigen-induced pulmonary responses were evaluated. In Ascaris-sensitized sheep, SLPI (3 mg) administered by aerosol daily for 4 days, with the final dose 0.5 h before antigen challenge, reduced the areas under the curve for early- and late-phase bronchoconstriction (73 and 95%, respectively; p <.05 versus control responses). SLPI also inhibited the development of airway hyperresponsiveness to carbachol (84%, p <. 05 versus control response) measured 24 h after antigen challenge. In ovalbumin-sensitized guinea pigs, intratracheal administration of SLPI daily for 3 days, with the final dose 1 h before antigen challenge, inhibited the development of airway hyperresponsiveness to histamine with an ED50 of <0.05 mg/kg. Prolonged pharmacodynamic activity of SLPI was observed in both species. In a murine model of atopic asthma, SLPI inhibited leukocyte influx into the airways after chronic allergen challenge. SLPI administered to sheep by the predosing protocol described above also prevented the antigen-induced decrease of tracheal mucus velocity (p <.05). In addition, a single aerosol administration of SLPI (30 mg) to sheep 1 h after antigen challenge inhibited the subsequent late-phase bronchoconstriction and development of hyperresponsiveness and reversed the stimulated decrease in tracheal mucus velocity. These results suggest that SLPI may provide therapeutic intervention against the pathophysiology of asthma and its underlying pathology.  (+info)

Secretory leukocyte protease inhibitor concentration increases in amniotic fluid with the onset of labour in women: characterization of sites of release within the uterus. (5/348)

Secretory leukocyte protease inhibitor is a potent inhibitor of neutrophil function, a mediator of mucosal immunity and an inhibitor of NF|gkB regulated inflammatory responses. However, its source, function and regulation within the uterus during pregnancy and at parturition are not well defined. In amniotic fluid, the concentration of secretory leukocyte protease inhibitor increased significantly from 2nd trimester (24+/-3 ng/ml; mean+/-s.e.m.; n=20) to term (751+/-53 ng/ml; P<0.05; n=15) with a further profound increase (P<0.005) with the onset of labour (3929+/-1076 ng/ml; n=15). To establish the intra-uterine sites of secretion, explants (n=6 different patients per tissue) were collected at term after elective caesarean section. High levels of secretory leukocyte protease inhibitor were released by decidua (135.2+/-12.4 pg/mg; mean+/-s.e.m.) and chorio-decidua (325.1+/-26.4 pg/mg) with less by amnion (55.6+/-6.0 pg/mg) and placenta (9.2+/-1.9 pg/mg). Intense immunoreactivity for secretory leukocyte protease inhibitor was detected predominantly in decidua parietalis cells adherent to the chorion laeve and myometrium, and also in decidua basalis. We propose that, within the pregnant uterus, secretory leukocyte protease inhibitor is released by decidua, fetal membranes and potentially the fetal lung. The increase in secretory leukocyte protease inhibitor may act to modulate pro-inflammatory paracrine interactions for the maintenance of pregnancy and limit those occurring at parturition within the uterus.  (+info)

Seminal plasma components stimulate interleukin-8 and interleukin-10 release. (6/348)

Human seminal plasma has potent anti-inflammatory properties which are thought to confer a survival advantage to the spermatozoa within the hostile female genital tract. In contrast, a profound pro-inflammatory leukocytosis has been observed post-coitus in animals and humans. Whether components of seminal plasma are involved in initiating this leukocytic reaction is not known. This study investigated the effect of human seminal plasma, a seminal plasma fraction and its principal constituent prostaglandins, prostaglandin E2 (PGE2) and 19-hydroxy PGE, on the release of the pro-inflammatory neutrophil chemotactic factor interleukin-8 (IL-8) and the anti-inflammatory cytokines interleukin-10 (IL-10) and secretory leukocyte protease inhibitor (SLPI). The tissues studied were non-pregnant cervical explants, peripheral blood and the monocyte cell line U937. Seminal plasma fraction (SPF) significantly (P < 0.05) stimulated release of IL-8 and inhibited release of SLPI from non-pregnant cervical explants. SPF, PGE2 and 19-hydroxy PGE significantly (P< 0.005) stimulated IL-8 release from peripheral blood and U937 cells. 19-hydroxy PGE was significantly (P< 0.005) more effective than PGE2 in stimulating IL-8 release. Seminal plasma, SPF and PGE2 significantly (P < 0.05) stimulated IL-10 release from U937 cells. 19-hydroxy PGE stimulated IL-10 release from U937 cells but this failed to reach significance. Release of IL-10 by cervical explants and SLPI by peripheral blood and U937 cells were below the detection limit of the assays employed. We suggest that the anti- and pro-inflammatory immune responses which seminal plasma induces might act in combination initially to promote sperm survival and then to facilitate their removal from the female genital tract.  (+info)

Converting enzyme-independent release of tumor necrosis factor alpha and IL-1beta from a stimulated human monocytic cell line in the presence of activated neutrophils or purified proteinase 3. (7/348)

Two important cytokines mediating inflammation are tumor necrosis factor alpha (TNFalpha) and IL-1beta, both of which require conversion to soluble forms by converting enzymes. The importance of TNFalpha-converting enzyme and IL-1beta-converting enzyme in the production of circulating TNFalpha and IL-1beta in response to systemic challenges has been demonstrated by the use of specific converting enzyme inhibitors. Many inflammatory responses, however, are not systemic but instead are localized. In these situations release and/or activation of cytokines may be different from that seen in response to a systemic stimulus, particularly because associations of various cell populations in these foci allows for the exposure of procytokines to the proteolytic enzymes produced by activated neutrophils, neutrophil elastase (NE), proteinase 3 (PR3), and cathepsin G (Cat G). To investigate the possibility of alternative processing of TNFalpha and/or IL-1beta by neutrophil-derived proteinases, immunoreactive TNFalpha and IL-1beta release from lipopolysaccharide-stimulated THP-1 cells was measured in the presence of activated human neutrophils. Under these conditions, TNFalpha and IL-1beta release was augmented 2- to 5-fold. In the presence of a specific inhibitor of NE and PR3, enhanced release of both cytokines was largely abolished; however, in the presence of a NE and Cat G selective inhibitor, secretory leucocyte proteinase inhibitor, reduction of the enhanced release was minimal. This finding suggested that the augmented release was attributable to PR3 but not NE nor Cat G. Use of purified enzymes confirmed this conclusion. These results indicate that there may be alternative pathways for the production of these two proinflammatory cytokines, particularly in the context of local inflammatory processes.  (+info)

The trappin gene family: proteins defined by an N-terminal transglutaminase substrate domain and a C-terminal four-disulphide core. (8/348)

Recently, several new genes have been discovered in various species which are homologous to the well-characterized human epithelial proteinase inhibitor elafin/SKALP (skin-derived anti-leukoproteinase). Because of the high degree of conservation and the similarities in genomic organization, we propose that these genes belong to a novel gene family. At the protein level, the family members are defined by: (1) an N-terminal domain consisting of a variable number of repeats with the consensus sequence Gly-Gln-Asp-Pro-Val-Lys that can act as an anchoring motif by transglutaminase cross-linking, and (2) a C-terminal four-disulphide core or whey acidic protein (WAP) domain, which harbours a functional motif involved in binding of proteinases and possibly other proteins. We have proposed the name trappin gene family as a unifying nomenclature for this group of proteins (trappin is an acronym for TRansglutaminase substrate and wAP domain containing ProteIN, and refers to its functional property of 'getting trapped' in tissues by covalent cross-linking). Analysis of the trappin family members shows extensive diversification in bovidae and suidae, whereas the number of primate trappins is probably limited. Recent biochemical and cell biological data on the human trappin family member elafin/SKALP suggest that this molecule is induced in epidermis by cellular stress. We hypothesize that trappins play an important role in the regulation of inflammation and in protection against tissue damage in stratified epithelia.  (+info)