Peripheral autoantigen induces regulatory T cells that prevent autoimmunity. (1/643)

Previous studies have shown that autoimmune thyroiditis can be induced in normal laboratory rats after thymectomy and split dose gamma-irradiation. Development of disease can be prevented by reconstitution of PVG rats shortly after their final irradiation with either peripheral CD4(+)CD45RC- T cells or CD4(+)CD8(-) thymocytes from syngeneic donors. Although the activity of both populations is known to depend on the activities of endogenously produced interleukin 4 and transforming growth factor beta, implying a common mechanism, the issue of antigen specificity of the cells involved has not yet been addressed. In this study, we show that the regulatory T cells that prevent autoimmune thyroiditis are generated in vivo only when the relevant autoantigen is also present. Peripheral CD4(+) T cells, from rats whose thyroids were ablated in utero by treatment with 131I, were unable to prevent disease development upon adoptive transfer into thymectomized and irradiated recipients. This regulatory deficit is specific for thyroid autoimmunity, since CD4(+) T cells from 131I-treated PVG.RT1(u) rats were as effective as those from normal donors at preventing diabetes in thymectomized and irradiated PVG.RT1(u) rats. Significantly, in contrast to the peripheral CD4(+) T cells, CD4(+)CD8(-) thymocytes from 131I-treated PVG donors were still able to prevent thyroiditis upon adoptive transfer. Taken together, these data indicate that it is the peripheral autoantigen itself that stimulates the generation of the appropriate regulatory cells from thymic emigrant precursors.  (+info)

Concerted activity of tyrosine phosphatase SHP-2 and focal adhesion kinase in regulation of cell motility. (2/643)

The coordinated interplay of substrate adhesion and deadhesion is necessary for cell motility. Using MCF-7 cells, we found that insulin-like growth factor I (IGF-I) induces the adhesion of MCF-7 to vitronectin and collagen in a dose- and time-dependent manner, suggesting that IGF-I triggers the activation of different integrins. On the other hand, IGF-I promotes the association of insulin receptor substrate 1 with the focal adhesion kinase (FAK), paxillin, and the tyrosine phosphatase SHP-2, resulting in FAK and paxillin dephosphorylation. Abrogation of SHP-2 catalytic activity with a dominant-negative mutant (SHP2-C>S) abolishes IGF-I-induced FAK dephosphorylation, and cells expressing SHP2-C>S show reduced IGF-I-stimulated chemotaxis compared with either mock- or SHP-2 wild-type-transfected cells. This impairment of cell migration is recovered by reintroduction of a catalytically active SHP-2. Interestingly, SHP-2-C>S cells show a larger number of focal adhesion contacts than wild-type cells, suggesting that SHP-2 activity participates in the integrin deactivation process. Although SHP-2 regulates mitogen-activated protein kinase activity, the mitogen-activated protein kinase kinase inhibitor PD-98059 has only a marginal effect on MCF-7 cell migration. The role of SHP-2 as a general regulator of cell chemotaxis induced by other chemotactic agents and integrins is discussed.  (+info)

Transcriptional activation of the glucose transporter GLUT1 in ventricular cardiac myocytes by hypertrophic agonists. (3/643)

Myocardial hypertrophy is associated with increased basal glucose metabolism. Basal glucose transport into cardiac myocytes is mediated by the GLUT1 isoform of glucose transporters, whereas the GLUT4 isoform is responsible for regulatable glucose transport. Treatment of neonatal cardiac myocytes with the hypertrophic agonist 12-O-tetradecanoylphorbol-13-acetate or phenylephrine increased expression of Glut1 mRNA relative to Glut4 mRNA. To study the transcriptional regulation of GLUT1 expression, myocytes were transfected with luciferase reporter constructs under the control of the Glut1 promoter. Stimulation of the cells with 12-O-tetradecanoylphorbol-13-acetate or phenylephrine induced transcription from the Glut1 promoter, which was inhibited by cotransfection with the mitogen-activated protein kinase phosphatases CL100 and MKP-3. Cotransfection of the myocytes with constitutively active versions of Ras and MEK1 or an estrogen-inducible version of Raf1 also stimulated transcription from the Glut1 promoter. Hypertrophic induction of the Glut1 promoter was also partially sensitive to inhibition of the phosphatidylinositol 3-kinase pathway and was strongly inhibited by cotransfection with dominant-negative Ras. Thus, Ras activation and pathways downstream of Ras mediate induction of the Glut1 promoter during myocardial hypertrophy.  (+info)

Reactivation of tuberculosis is associated with a shift from type 1 to type 2 cytokines. (4/643)

The pattern of cytokines produced by T cells from mice with latent tuberculosis and during reactivation of tuberculosis was determined. A type 1 cytokine pattern was observed in T cells isolated from the lung of mice with latent disease. Reactivation of mycobacterial growth, by activation of the hypothalamic-pituitary-adrenal (HPA) axis, resulted in a shift from a type 1 to a type 2 cytokine pattern in both CD4 and CD8 T cells. Classification of the T cells based on their differential expression of CD45 and CD44 showed that the phenotypically different populations of CD4 and CD8 cells exhibited a type 1 cytokine pattern at latency and that reactivation of latent tuberculosis was associated with a shift in cytokines produced by these populations to a type 2 cytokine response. Control of mycobacterial growth resulted in a return to the type 1 cytokine pattern found during latent disease.  (+info)

Altered expression of tyrosine kinases of the Src and Syk families in human T-cell leukemia virus type 1-infected T-cell lines. (5/643)

During the late phase of adult T-cell leukemia/lymphoma, a severe lymphoproliferative disorder caused by human T-cell leukemia virus type 1 (HTLV-1), leukemic cells no longer produce interleukin-2. Several studies have reported the lack of the Src-like protein tyrosine kinase Lck and overexpression of Lyn and Fyn in these cells. In this report we demonstrate that, in addition to the downregulation of TCR, CD45, and Lck (which are key components of T-cell activation), HTLV-1-infected cell lines demonstrate a large increase of FynB, a Fyn isoform usually poorly expressed in T cells. Furthermore, similar to anergic T cells, Fyn is hyperactive in one of these HTLV-1-infected T-cell lines, probably as a consequence of Csk downregulation. A second family of two proteins, Zap-70 and Syk, relay the signal of T-cell activation. We demonstrate that in contrast to uninfected T cells, Zap-70 is absent in HTLV-1-infected T cells, whereas Syk is overexpressed. In searching for the mechanism responsible for FynB overexpression and Zap-70 downregulation, we have investigated the ability of the Tax and Rex proteins to modulate Zap-70 expression and the alternative splicing mechanism which gives rise to either FynB or FynT. By using Jurkat T cells stably transfected with the tax and rex genes or inducibly expressing the tax gene, we found that the expression of Rex was necessary to increase fynB expression, suggesting that Rex controls fyn gene splicing. Conversely, with the same Jurkat clones, we found that the expression of Tax but not Rex could downregulate Zap-70 expression. These results suggest that the effect of Tax and Rex must cooperate to deregulate the pathway of T-cell activation in HTLV-1-infected T cells.  (+info)

A role for CD45RBlow CD38+ T cells and costimulatory pathways of T-cell activation in protection of non-obese diabetic (NOD) mice from diabetes. (6/643)

Non-obese diabetic (NOD) mice spontaneously develop autoimmune insulin-dependent diabetes mellitus (IDDM). Infection of the animals with mycobacteria, or immunization with mycobacteria-containing adjuvant, results in permanent protection of NOD mice from diabetes and we have recently reported that the phenomenon is associated with increased numbers of interferon-gamma-producing T cells, possessing increased cytotoxic activity, and also with augmented numbers of activated immunoglobulin M-positive (IgM+) B cells. Here, we have investigated whether protection of NOD mice from IDDM was associated with changes on costimulatory pathways of T and B cells, namely CD28/CTLA-4-B7 and CD40-CD40 ligand (CD40L) and we also further characterized protective T helper (Th) cells with regards to the expression of the differentiation markers CD45RB and CD38. We report that Th cells involved in diabetes vaccination of NOD mice by mycobacterial infection seem to belong to CD45RBlo CD38+ phenotype. The protective effect of Mycobacterium avium infection is also associated with increased CD40L and CTLA-4- expressing Th cells and with the generation of a CD40- IgG+ B cells. Our data are consistent with induction by mycobacterial infection of regulatory CD45RBlo CD38+ Th cells with the ability to trigger deletion or anergy of peripheral self-reactive lymphocytes, with shutting down of IgG+ B-cell response. They also implicate a role for IgG+ B cells in the autoimmune aggression of the endocrine pancreas of NOD mice.  (+info)

Both memory and CD45RA+/CD62L+ naive CD4(+) T cells are infected in human immunodeficiency virus type 1-infected individuals. (7/643)

Cellular activation is critical for the propagation of human immunodeficiency virus type 1 (HIV-1) infection. It has been suggested that truly naive CD4(+) T cells are resistant to productive HIV-1 infection because of their constitutive resting state. Memory and naive CD4(+) T-cell subsets from 11 HIV-1-infected individuals were isolated ex vivo by a combination of magnetic bead depletion and fluorescence-activated cell sorting techniques with stringent criteria of combined expression of CD45RA and CD62L to identify naive CD4(+) T-cell subsets. In all patients HIV-1 provirus could be detected within naive CD45RA+/CD62L+ CD4(+) T cells; in addition, replication-competent HIV-1 was isolated from these cells upon CD4(+) T-cell stimulation in tissue cultures. Memory CD4(+) T cells had a median of fourfold more replication-competent virus and a median of sixfold more provirus than naive CD4(+) T cells. Overall, there was a median of 16-fold more integrated provirus identified in memory CD4(+) T cells than in naive CD4(+) T cells within a given patient. Interestingly, there was a trend toward equalization of viral loads in memory and naive CD4(+) T-cell subsets in those patients who harbored CXCR4-using (syncytium-inducing) viruses. Within any given patient, there was no selective usage of a particular coreceptor by virus isolated from memory versus naive CD4(+) T cells. Our findings suggest that naive CD4(+) T cells may be a significant viral reservoir for HIV, particularly in those patients harboring CXCR4-using viruses.  (+info)

Role of PTP-1B in aortic smooth muscle cell motility and tyrosine phosphorylation of focal adhesion proteins. (8/643)

Recent studies have focused attention on the role of protein tyrosine kinases in vascular smooth muscle cell biology, but similar information regarding protein tyrosine phosphatases (PTP) is sparse. PTP-1B is a ubiquitous nonreceptor phosphatase with uncertain function and substrates that are mostly unidentified. We used antisense oligodeoxynucleotides (ODN) against PTP-1B to investigate the role of endogenous PTP-1B in motility of primary cultures of rat aortic smooth muscle cells (RASMC). Antisense ODN decreased PTP-1B protein levels and activity in a concentration-dependent fashion, whereas sense, scrambled, or three-base mismatch antisense ODN had little or no effect. Treatment of cells with antisense ODN, but not sense, scrambled, or three-base mismatch antisense ODN, enhanced cell motility and increased tyrosine phosphorylation levels of focal adhesion proteins paxillin, p130(cas), and focal adhesion kinase. Our findings indicate that PTP-1B is a negative regulator of RASMC motility via modulation of phosphotyrosine levels in several focal adhesion proteins and suggest the involvement of PTP-1B in events such as atherosclerosis and restenosis, which are associated with increased vascular smooth muscle cell motility.  (+info)