Purification and cloning of aggrecanase-1: a member of the ADAMTS family of proteins. (1/186)

We purified, cloned, and expressed aggrecanase, a protease that is thought to be responsible for the degradation of cartilage aggrecan in arthritic diseases. Aggrecanase-1 [a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4)] is a member of the ADAMTS protein family that cleaves aggrecan at the glutamic acid-373-alanine-374 bond. The identification of this protease provides a specific target for the development of therapeutics to prevent cartilage degradation in arthritis.  (+info)

Human Ehlers-Danlos syndrome type VII C and bovine dermatosparaxis are caused by mutations in the procollagen I N-proteinase gene. (2/186)

Ehlers-Danlos syndrome (EDS) type VIIC is a recessively inherited connective-tissue disorder, characterized by extreme skin fragility, characteristic facies, joint laxity, droopy skin, umbilical hernia, and blue sclera. Like the animal model dermatosparaxis, EDS type VIIC results from the absence of activity of procollagen I N-proteinase (pNPI), the enzyme that excises the N-propeptide of type I and type II procollagens. The pNPI enzyme is a metalloproteinase containing properdin repeats and a cysteine-rich domain with similarities to the disintegrin domain of reprolysins. We used bovine cDNA to isolate human pNPI. The human enzyme exists in two forms: a long version similar to the bovine enzyme and a short version that contains the Zn++-binding catalytic site but lacks the entire C-terminal domain in which the properdin repeats are located. We have identified the mutations that cause EDS type VIIC in the six known affected human individuals and also in one strain of dermatosparactic calf. Five of the individuals with EDS type VIIC were homozygous for a C-->T transition that results in a premature termination codon, Q225X. Four of these five patients were homozygous at three downstream polymorphic sites. The sixth patient was homozygous for a different transition that results in a premature termination codon, W795X. In the dermatosparactic calf, the mutation is a 17-bp deletion that changes the reading frame of the message. These data provide direct evidence that EDS type VIIC and dermatosparaxis result from mutations in the pNPI gene.  (+info)

Sites of aggrecan cleavage by recombinant human aggrecanase-1 (ADAMTS-4). (3/186)

Aggrecan, the major proteoglycan of cartilage that provides its mechanical properties of compressibility and elasticity, is one of the first matrix components to undergo measurable loss in arthritic diseases. Two major sites of proteolytic cleavage have been identified within the interglobular domain (IGD) of the aggrecan core protein, one between amino acids Asn(341)-Phe(342) which is cleaved by matrix metalloproteinases and the other between Glu(373)-Ala(374) that is attributed to aggrecanase. Although several potential aggrecanase-sensitive sites had been identified within the COOH terminus of aggrecan, demonstration that aggrecanase cleaved at these sites awaited isolation and purification of this protease. We have recently cloned human aggrecanase-1 (ADAMTS-4) (Tortorella, M. D., Burn, T. C., Pratta, M. A., Abbaszade, I., Hollis, J. M., Liu, R., Rosenfeld, S. A., Copeland, R. A., Decicco, C. P., Wynn, R., Rockwell, A., Yang, F., Duke, J. L., Solomon, K., George, H., Bruckner, R., Nagase, H., Itoh, Y., Ellis, D. M., Ross, H., Wiswall, B. H., Murphy, K., Hillman, M. C., Jr., Hollis, G. F., Newton, R. C., Magolda, R. L., Trzaskos, J. M., and Arner, E. C. (1999) Science 284, 1664-1666) and herein demonstrate that in addition to cleavage at the Glu(373)-Ala(374) bond, this protease cleaves at four sites within the chondroitin-sulfate rich region of the aggrecan core protein, between G2 and G3 globular domains. Importantly, we show that this cleavage occurs more efficiently than cleavage within the IGD at the Glu(373)-Ala(374) bond. Cleavage occurred preferentially at the KEEE(1667-1668)GLGS bond to produce both a 140-kDa COOH-terminal fragment and a 375-kDa fragment that retains an intact G1. Cleavage also occurred at the GELE(1480-1481)GRGT bond to produce a 55-kDa COOH-terminal fragment and a G1-containing fragment of 320 kDa. Cleavage of this 320-kDa fragment within the IGD at the Glu(373)-Ala(374) bond then occurred to release the 250-kDa BC-3-reactive fragment from the G1 domain. The 140-kDa GLGS-reactive fragment resulting from the preferential cleavage was further processed at two additional cleavage sites, at TAQE(1771)-(1772)AGEG and at VSQE(1871-1872)LGQR resulting in the formation of a 98-kDa fragment with an intact G3 domain and two small fragments of approximately 20 kDa. These data elucidate the sites and efficiency of cleavage during aggrecan degradation by aggrecanase and suggest potential tools for monitoring aggrecan cleavage in arthritis.  (+info)

The thrombospondin motif of aggrecanase-1 (ADAMTS-4) is critical for aggrecan substrate recognition and cleavage. (4/186)

Aggrecanase-1 (ADAMTS-4) is a member of the a disintegrin and metalloprotease with thrombospondin motifs (ADAMTS) protein family that was recently identified. Aggrecanase-1 is one of two ADAMTS cartilage-degrading enzymes purified from interleukin-1-stimulated bovine nasal cartilage (Tortorella, M. D., Burn, T. C., Pratta, M. A. , Abbaszade, I., Hollis, J. M., Liu, R., Rosenfeld, S. A., Copeland, R. A., Decicco, C. P., Wynn, R., Rockwell, A., Yang, F., Duke, J. L., Solomon, K., George, H., Bruckner, R., Nagase, H., Itoh, Y., Ellis, D. M., Ross, H., Wiswall, B. H., Murphy, K., Hillman, M. C., Jr., Hollis, G. F., and Arner, E.C. (1999) Science 284, 1664-1666; 2 Abbaszade, I., Liu, R. Q., Yang, F., Rosenfeld, S. A., Ross, O. H., Link, J. R., Ellis, D. M., Tortorella, M. D., Pratta, M. A., Hollis, J. M., Wynn, R., Duke, J. L., George, H. J., Hillman, M. C., Jr., Murphy, K., Wiswall, B. H., Copeland, R. A., Decicco, C. P., Bruckner, R., Nagase, H., Itoh, Y., Newton, R. C., Magolda, R. L., Trzaskos, J. M., and Burn, T. C. (1999) J. Biol. Chem. 274, 23443-23450). The aggrecan products generated by this enzyme are found in cartilage cultures stimulated with cytokines and in synovial fluid from patients with arthritis, suggesting that aggrecanase-1 may be important in diseases involving cartilage destruction. Here we demonstrate that the thrombospondin type-1 (TSP-1) motif located within the C terminus of aggrecanase-1 binds to the glycosaminoglycans of aggrecan. Data from several studies indicate that this binding of aggrecanase-1 to aggrecan through the TSP-1 motif is necessary for enzymatic cleavage of aggrecan. 1) A truncated form of aggrecanase-1 lacking the TSP-1 motif was not effective in cleaving aggrecan. 2) Several peptides representing different regions of the TSP-1 motif effectively blocked aggrecanase-1 cleavage of aggrecan by preventing the enzyme from binding to the substrate. 3) Aggrecanase-1 was not effective in cleaving glycosaminoglycan-free aggrecan. Taken together, these data suggest that the TSP-1 motif of aggrecanase-1 is critical for substrate recognition and cleavage.  (+info)

Brevican is degraded by matrix metalloproteinases and aggrecanase-1 (ADAMTS4) at different sites. (5/186)

Brevican is a member of the lectican family of chondroitin sulfate proteoglycans that is predominantly expressed in the central nervous system. The susceptibility of brevican to digestion by matrix metalloproteinases (MMP-1, -2, -3, -7, -8, -9, -10, and -13 and membrane type 1 and 3 MMPs) and aggrecanase-1 (ADAMTS4) was examined. MMP-1, -2, -3, -7, -8, -10, and -13 degraded brevican into a few fragments with similar molecular masses, whereas the degradation products of aggrecanase-1 had apparently different sizes. NH(2)-terminal sequence analyses of the digestion fragments revealed that cleavages of the brevican core protein by these metalloproteinases occurred commonly within the central non-homologous domain. MMP-1, -2, -3, -7, -8, -10, and -13 preferentially attacked the Ala(360)-Phe(361) bond, whereas aggrecanase-1 cleaved the Glu(395)-Ser(396) bond, which are similar to the cleavage sites observed with cartilage proteoglycan (aggrecan) for the MMPs and aggrecanase-1, respectively. These data demonstrate that MMP-1, -2, -3, -7, -8, -10, and -13 and aggrecanase-1 digest brevican in a similar pattern to aggrecan and suggest that they may be responsible for the physiological turnover and pathological degradation of brevican.  (+info)

TIMP-3 is a potent inhibitor of aggrecanase 1 (ADAM-TS4) and aggrecanase 2 (ADAM-TS5). (6/186)

The proteoglycan aggrecan is an important major component of cartilage matrix that gives articular cartilage the ability to withstand compression. Increased breakdown of aggrecan is associated with the development of arthritis and is considered to be catalyzed by aggrecanases, members of the ADAM-TS family of metalloproteinases. Four endogenous tissue inhibitors of metalloproteinases (TIMPs) regulate the activities of functional matrix metalloproteinases (MMPs), enzymes that degrade most components of connective tissue, but no endogenous factors responsible for the regulation of aggrecanases have been found. We show here that the N-terminal inhibitory domain of TIMP-3, a member of the TIMP family that has functional properties distinct from other TIMPs, is a strong inhibitor of human aggrecanases 1 and 2, with K(i) values in the subnanomolar range. This truncated inhibitor, which lacks the C-terminal domain that is responsible for interactions with molecules other than active metalloproteinases, is produced at high yield by bacterial expression and folding from inclusion bodies. This provides a starting point for developing a biologically available aggrecanase inhibitor suitable for the treatment of arthritis.  (+info)

Versican V1 proteolysis in human aorta in vivo occurs at the Glu441-Ala442 bond, a site that is cleaved by recombinant ADAMTS-1 and ADAMTS-4. (7/186)

Mature human aorta contains a 70-kDa versican fragment, which reacts with a neoepitope antiserum to the C-terminal peptide sequence DPEAAE. This protein therefore appears to represent the G1 domain of versican V1 (G1-DPEAAE(441)), which has been generated in vivo by proteolytic cleavage at the Glu(441)-Ala(442) bond, within the sequence DPEAAE(441)-A(442)RRGQ. Because the equivalent aggrecan product (G1-NITEGE(341)) and brevican product (G1-EAVESE(395)) are generated by ADAMTS-mediated cleavage of the respective proteoglycans, we tested the capacity of recombinant ADAMTS-1 and ADAMTS-4 to cleave versican at Glu(441)-Ala(442). Both enzymes cleaved a recombinant versican substrate and native human versican at the Glu(441)-Ala(442) bond and the mature form of ADAMTS-4 was detected by Western analysis of extracts of aortic intima. We conclude that versican V1 proteolysis in vivo can be catalyzed by one or more members of the ADAMTS family of metalloproteinases.  (+info)

Transgenic mice with inactive alleles for procollagen N-proteinase (ADAMTS-2) develop fragile skin and male sterility. (8/186)

Transgenic mice were prepared with inactive alleles for procollagen N-proteinase (ADAMTS-2; where ADAMTS stands for a disintegrin and metalloproteinase with thrombospondin repeats). Homozygous mice were grossly normal at birth, but after 1-2 months they developed thin skin that tore after gentle handling. Although the gene was inactivated, a large fraction of the N-propeptides of type I procollagen in skin and the N-propeptides of type II procollagen in cartilage were cleaved. Therefore the results suggested the tissues contained one or more additional enzymes that slowly process the proteins. Electron microscopy did not reveal any defects in the morphology of collagen fibrils in newborn mice. However, in two-month-old mice, the collagen fibrils in skin were seen as bizarre curls in cross-section and the mean diameters of the fibrils were approx. half of the controls. Although a portion of the N-propeptides of type II procollagen in cartilage were not cleaved, no defects in the morphology of the fibrils were seen by electron microscopy or by polarized-light microscopy. Female homozygous mice were fertile, but male mice were sterile with a marked decrease in testicular sperm. Therefore the results indicated that ADAMTS-2 plays an essential role in the maturation of spermatogonia.  (+info)