Genome mapping in capsicum and the evolution of genome structure in the solanaceae. (65/4069)

We have created a genetic map of Capsicum (pepper) from an interspecific F2 population consisting of 11 large (76.2-192.3 cM) and 2 small (19.1 and 12.5 cM) linkage groups that cover a total of 1245.7 cM. Many of the markers are tomato probes that were chosen to cover the tomato genome, allowing comparison of this pepper map to the genetic map of tomato. Hybridization of all tomato-derived probes included in this study to positions throughout the pepper map suggests that no major losses have occurred during the divergence of these genomes. Comparison of the pepper and tomato genetic maps showed that 18 homeologous linkage blocks cover 98.1% of the tomato genome and 95.0% of the pepper genome. Through these maps and the potato map, we determined the number and types of rearrangements that differentiate these species and reconstructed a hypothetical progenitor genome. We conclude there have been 30 breaks as part of 5 translocations, 10 paracentric inversions, 2 pericentric inversions, and 4 disassociations or associations of genomic regions that differentiate tomato, potato, and pepper, as well as an additional reciprocal translocation, nonreciprocal translocation, and a duplication or deletion that differentiate the two pepper mapping parents.  (+info)

Conformation of the primary binding loop folded through an intramolecular interaction contributes to the strong chymotrypsin inhibitory activity of the chymotrypsin inhibitor from Erythrina variegata seeds. (66/4069)

We previously demonstrated that amino acid residues Gln62 (P3), Phe63 (P2), Leu64 (P1), and Phe67 (P3') in the primary binding loop of Erythrina variegata chymotrypsin inhibitor (ECI), a member of the Kunitz inhibitor family, are involved in its strong inhibitory activity toward chymotrypsin [Iwanaga et al. (1998) J. Biochem. 124, 663-669]. To determine whether or not these four amino acid residues predominantly contribute to the strong inhibitory activity of ECI, they were simultaneously replaced by Ala. The results showed that a quadruple mutant, Q62A/F63A/L64A/F67A, retained considerable inhibitory activity (Ki, 5.6 x 10(-7) M), indicating that in addition to the side chains of these four amino acid residues, the backbone structure of the primary binding loop in ECI is essential for the inhibitory activity toward chymotrypsin. Two chimeric proteins, in which the primary binding loops of ECI and ETIa were exchanged: an isoinhibitor from E. variegata with lower chymotrypsin inhibitory activity, were constructed to determine whether the backbone structure of the primary binding loop of ECI was formed by the amino acid residues therein, or through an interaction between the primary binding loop and the residual structure designated as the "scaffold." A chimeric protein, ECI/ETIa, composed of the primary binding loop of ECI and the scaffold of ETIa showed weaker inhibitory activity (Ki, 1.3 x 10(-6) M) than ECI (Ki, 9.8 x 10(-8) M). In contrast, a chimera, ETIa/ECI, comprising the primary binding loop of ETIa and the scaffold of ECI inhibited chymotrypsin more strongly (Ki, 5.7 x 10(-7) M) than ETIa (Ki, 1.3 x 10(-6) M). These results indicate that the intramolecular interaction between the primary binding loop and the scaffold of ECI plays an important role in the strong inhibitory activity toward chymotrypsin. Furthermore, surface plasmon resonance analysis revealed that the side chains on the primary binding loop of ECI contribute to both an increase in the association rate constant (kon) and a decrease in the dissociation rate constant (koff) for the ECI-chymotrypsin interaction, whereas the backbone structure of the primary binding loop mainly contributes to a decrease in the dissociation rate constant.  (+info)

Effect of 'Mentat' on the pharmacokinetics of single and multiple doses o phenytoin in rabbits. (67/4069)

The effect of 'Mentat', a herbal preparation, was studied on pharmacokinetics of single and multiple doses of phenytoin in rabbits. No significant effect was found after single oral dose of 'Mentat' on single dose kinetics of phenytoin. However, 'Mentat' administration for 7 days increased the steady state kinetic parameters. Peak plasma phenytoin concentration, area under the implasma concentration and elimination half life were significantly increased and t-max was significantly reduced, indicating the suppression of phenytoin metabolism by 'Mentat'.  (+info)

CuI-semiquinone radical species in plant copper-amine oxidases. (68/4069)

The intermediate CuI-semiquinone radical species in the catalytic mechanism of copper-amine oxidase from Lens esculenta and Pisum sativum seedlings has been studied by optical, Raman resonance and ESR spectroscopies and by stopped-flow and temperature-jump measurements. Treatment of highly purified enzyme preparations with good, poor or suicide substrates, under anaerobic and aerobic conditions, at different pH values and temperatures, makes it possible to generate, detect and characterize this free radical intermediate.  (+info)

Antibacterial effect of garlic and omeprazole on Helicobacter pylori. (69/4069)

The antibacterial effect of a home-made raw garlic extract and commercial garlic tablets alone and in combination with antibiotics or omeprazole was determined against clinical isolates of Helicobacter pylori. MIC values of raw garlic extract and three types of commercial garlic tablets ranged from 10,000 to 17,500 mg/L. When MIC values of the commercial tablets were based on the allicin content, no differences between the three types were observed. The combination of garlic and omeprazole, studied with killing curves, showed a synergic effect which was concentration dependent. Further clinical evaluation of garlic in combination with the conventional agents for H. pylori treatment seems warranted.  (+info)

Plant cell growth and differentiation may involve GAP regulation of Rac activity. (70/4069)

Two Rac GTPase cDNAs, LjRac1 and LjRac2, were identified in the legume Lotus japonicus. Two-hybrid screening with dominant-constitutive mutations in the two Rac GTPases target three plant cDNAs, LjRacGAP1, LjRacGAP2 and LjRacGAP3, that encode putative GTPase activating proteins of Rho-GTPase subfamily members. Employing Rac antiserum, purified recombinant LjRac GTPases and recombinant LjRacGAP1, for ligand overlay assays, in vitro GAP affinity assays and GTPase activation, we confirmed that eukaryote Rac/RacGAP interplay is conserved in plants. In this investigation we have developed some tools that can be used to characterize the role of enhanced LjRac2 expression in developing root nodules.  (+info)

Structural analysis of a plant sucrose carrier using monoclonal antibodies and bacteriophage lambda surface display. (71/4069)

Monoclonal antibodies were raised and selected against recombinant Plantago major PmSUC2 sucrose carrier protein. Epitopes of two monoclonal antibodies (PS2-1A2 and PS2-4D4) were mapped using N-terminally truncated PmSUC2 proteins and a lambda library displaying random PmSUC2 peptides. PS2-1A2 recognizes an octapeptide close to the N-terminus of PmSUC2, PS2-4D4 binds to a decapeptide at the very C-terminus. Analyses of antibody binding to yeast protoplasts with functionally active, tagged PmSUC2 protein revealed that both epitopes are located in cytoplasmic domains of PmSUC2. These results support a model for plant sucrose transporters containing 12 transmembrane helices with the N-terminus and the C-terminus on the cytoplasmic side of the plasma membrane.  (+info)

Effect of CWG methylation on expression of plant genes. (72/4069)

The presence of two DNA methyltransferases in Pisum raises the possibility that they serve different functions. In vitro methylation of CWG sequences in the strong cauliflower mosaic virus 35S promoter had no effect on reporter gene expression. In contrast, in vitro methylation of CWG sequences in the relatively weak, CG-deficient Phaseolus vulgaris rbcS2 promoter inhibited transcription. Expression of both constructs was strongly inhibited by extensive CG methylation. A search of published plant promoter sequences revealed that the CG content of promoters is very variable, with some promoters having typical CG islands. In contrast, the distribution of CWG sequences is more even with little evidence for CWG islands.  (+info)