A 55-kilodalton immunodominant antigen of Porphyromonas gingivalis W50 has arisen via horizontal gene transfer. (1/1072)

A 55-kDa outer membrane protein of Porphyromonas gingivalis W50 is a significant target of the serum immunoglobulin G antibody response of periodontal disease patients and hence may play an important role in host-bacterium interactions in periodontal disease. The gene encoding the 55-kDa antigen (ragB, for receptor antigen B) was isolated on a 9.5-kb partial Sau3AI fragment of P. gingivalis W50 chromosomal DNA in pUC18 by immunoscreening with a monoclonal antibody to this antigen. The 1.6-kb open reading frame (ORF) encoding RagB was located via subcloning and nested-deletion analysis. Sequence analysis demonstrated the presence of an upstream 3.1-kb ORF (ragA) which is cotranscribed with ragB. A number of genetic characteristics suggest that the ragAB locus was acquired by a horizontal gene transfer event. These include a significantly reduced G+C content relative to that of the P. gingivalis chromosome (42 versus 48%) and the presence of mobility elements flanking this locus in P. gingivalis W50. Furthermore, Southern blotting and PCR analyses showed a restricted distribution of this locus in laboratory and clinical isolates of this bacterium. The association of ragAB+ P. gingivalis with clinical status was examined by PCR analysis of subgingival samples. ragAB+ was not detected in P. gingivalis-positive shallow pockets from periodontal disease patients but was present in 36% of the P. gingivalis-positive samples from deep pockets. These data suggest that the ragAB locus was acquired by certain P. gingivalis strains via horizontal gene transfer and that the acquisition of this locus may facilitate the survival of these strains at sites of periodontal destruction.  (+info)

Prolyl tripeptidyl peptidase from Porphyromonas gingivalis. A novel enzyme with possible pathological implications for the development of periodontitis. (2/1072)

Porphyromonas gingivalis possesses a complex proteolytic system, which is essential for both its growth and evasion of host defense mechanisms. In this report we characterized, both at a protein and genomic level, a novel peptidase of this system with prolyl tripeptidyl peptidase activity. The enzyme was purified to homogeneity, and its enzymatic activity and biochemical properties were investigated. The amino acid sequence at the amino terminus and of internal peptide fragments enabled identification of the gene encoding this enzyme, which we refer to as PtpA for prolyl tripeptidyl peptidase A. The gene encodes an 82-kDa protein, which contains a GWSYGG motif, characteristic for members of the S9 prolyl oligopeptidase family of serine proteases. However, it does not share any structural similarity to other tripeptidyl peptidases, which belong to the subtilisin family. The production of prolyl tripeptidyl peptidase may contribute to the pathogenesis of periodontal tissue destruction through the mutual interaction of this enzyme, host and bacterial collagenases, and dipeptidyl peptidases in the degradation of collagen during the course of infection.  (+info)

Humoral immune responses in periodontal disease may have mucosal and systemic immune features. (3/1072)

The humoral immune response, especially IgG and IgA, is considered to be protective in the pathogenesis of periodontal disease, but the precise mechanisms are still unknown. Immunoglobulins arriving at the periodontal lesion are from both systemic and local tissue sources. In order to understand better the local immunoglobulin production, we examined biopsy tissue from periodontitis lesions for the expression of IgM, IgG, IgA, IgE and in addition the IgG and IgA subclasses and J-chain by in situ hybridization. Tissues examined were superficial inflamed gingiva and the deeper granulation tissue from periodontal sites. These data confirm that IgM, and IgG and IgA subclass proteins and J-chain can be locally produced in the periodontitis tissues. IgG1 mRNA-expressing cells were predominant in the granulation tissues and in the gingiva, constituting approx. 65% of the total IgG-expressing plasma cells. There was a significantly increased proportion of IgA-expressing plasma cells in the gingiva compared with the granulation tissue (P < 0.01). Most of the IgA-expressing plasma cells were IgA1, but a greater proportion expressed IgA2 mRNA and J-chain mRNA in the gingival tissues (30.5% and 7.5%, respectively) than in the periodontal granulation tissues (19% and 0-4%, respectively). The J-chain or dimeric IgA2-expressing plasma cells were located adjacent to the epithelial cells, suggesting that this tissue demonstrates features consistent with a mucosal immune response. Furthermore, we were able to detect the secretory component in gingival and junctional epithelial cells, demonstrating that the periodontal epithelium shares features with mucosal epithelium. In contrast, deeper tissues had more plasma cells that expressed IgM, and less expressing IgA, a response which appears more akin to the systemic immune response. In conclusion, this study suggests that immune mechanisms involved in the pathogenesis of periodontitis may involve features of both the mucosal and systemic immune systems, dependent on tissue location.  (+info)

Role of gingipains R in the pathogenesis of Porphyromonas gingivalis-mediated periodontal disease. (4/1072)

It has been demonstrated that the Porphyromonas gingivalis cysteine proteinases (gingipains) activate and/or degrade a broad range of host proteins. Inactivation of gingipains R prior to infection of mice results in a decrease in the virulence of P. gingivalis. Analysis of mouse, rabbit, and chicken antisera raised to gingipain R1 demonstrated that the hemagglutinin domains of gingipains are very immunogenic; however, immunization of mice with a peptide derived from the hemagglutinin domain did not protect mice from P. gingivalis infection. Our recent studies indicate that immunization of mice with a peptide corresponding to the N-terminus of the catalytic domain of gingipains R results in the generation of an immune response that affords protection of mice from P. gingivalis infection. It is postulated that the protection observed results from the inactivation of the enzymatic activity of gingipains R as a result of antibody recognition of a processing site on the gingipain R precursor.  (+info)

The potential role of chemokines and inflammatory cytokines in periodontal disease progression. (5/1072)

Inflammation is regulated by the expression of mediators that cause a number of pleiotropic events culminating in the recruitment of inflammatory cells and release of biologic mediators by leukocytes. If the inflammation is transient in nature, it can protect the host by activating defense mechanisms and initiating wound repair. However, if the inflammation is inappropriate, it can lead to considerable tissue damage. My colleagues and I have investigated the role of chemokines, particularly monocyte chemoattractant protein 1, in various pathological processes and the role of the proinflammatory cytokines interleukin-1 (IL-1) and tumor necrosis factor (TNF) in experimental periodontitis. I will discuss first the studies on chemokines and then the use of IL-1 and TNF blockers in inhibiting inflammation and bone loss in the periodontium.  (+info)

Induction of prostaglandin release from macrophages by bacterial endotoxin. (6/1072)

This review summarizes the role of the monocytic responses to lipopolysaccharide as it relates to periodontal disease severity. Data are presented which illustrate that the levels of prostaglandin E2 (PGE2) secreted by systemic peripheral blood monocytes in culture, in the presence of bacterial endotoxins, are highly correlated with the levels observed in the gingival crevicular fluid. Furthermore, the different periodontal diagnostic categories have varying levels of monocytic and crevicular fluid PGE2, in juxtaposition with clinical disease severity. These data are consistent with the concept that there is close synchrony between the systemic responsiveness of peripheral blood monocytes with regard to prostanoid synthesis and the local levels of mediator present within the gingival crevice.  (+info)

Host modulation as a therapeutic strategy in the treatment of periodontal disease. (7/1072)

Specific microorganisms initiate the immunoinflammatory processes that destroy tissue in periodontitis. Recent work has demonstrated, in addition to bacterial control, that modulation of the host immunoinflammatory response is also capable of controlling periodontitis. Matrix metalloproteinases (MMPs) destroy collagen and other matrix components, and the osteoclastic bone remodeling determines the periodontal bone response to a bacterial challenge. Other components of the biology, including cytokines and prostanoids, regulate MMPs and bone remodeling and are also involved in regulating the production of defensive elements, such as antibody. Agents directed at blocking MMPs or osteoclastic activity are effective in reducing periodontitis. Agents that inhibit prostaglandin E2 and selective blockage of specific cytokines have also been effective. Improved knowledge of bacterium-host interactions and of the processes leading to tissue destruction will help to identify targets for host modulation to reduce periodontitis in selected situations.  (+info)

Distribution of Porphyromonas gingivalis strains with fimA genotypes in periodontitis patients. (8/1072)

Fimbriae (FimA) of Porphyromonas gingivalis are filamentous components on the cell surface and are thought to play an important role in the colonization and invasion of periodontal tissues. We previously demonstrated that fimA can be classified into four variants (types I to IV) on the basis of the nucleotide sequences of the fimA gene. In the present study, we attempted to detect the four different fimA genes in saliva and plaque samples isolated from patients with periodontitis using the PCR method. Four sets of fimA type-specific primers were designed for the PCR assay. These primers selectively amplified 392-bp (type I), 257-bp (type II), 247-bp (type III), and 251-bp (type IV) DNA fragments of the fimA gene. Positive PCR results were observed with reference strains of P. gingivalis in a type-specific manner. All other laboratory strains of oral and nonoral bacteria gave negative results. The sensitivity of the PCR assay for fimA type-specific detection was between 5 and 50 cells of P. gingivalis. Clinical samples were obtained from saliva and subgingival plaque from deep pockets (>/=4 mm) of 93 patients with periodontitis. Bacterial genomic DNA was isolated from the samples, and the targeted fragments were amplified by PCR. The presence of P. gingivalis was demonstrated in 73 patients (78.5%), and a single fimA gene was detected in most patients. The distribution of the four fimA types among the P. gingivalis-positive patients was as follows: type I, 5.4%; type II, 58.9%; type III, 6. 8%; type IV, 12.3%; types I and II, 6.8%; types II and IV, 2.7%; and untypeable, 6.8%. P. gingivalis with type II fimA was detected more frequently in the deeper pockets, and a significant difference of the occurrence was observed between shallow (4 mm) and deep (>/=8 mm) pockets. These results suggest that P. gingivalis strains that possess type II fimA are significantly more predominant in periodontitis patients, and we speculate that these organisms are involved in the destructive progression of periodontal diseases.  (+info)