The hemispherical porous acetabular component fixed by press-fit technique and additional screws. (9/642)

Seventy consecutive primary total hip arthroplasties in which a Harris-Galante porous-coated acetabular component had been used from October, 1986 to December, 1989 were reviewed for 5 to 9 years follow-up. We performed the retrospective, clinical and radiological analysis of the hemispheric, porous-coated, cementless acetabular component using press-fit and screw fixation. No component had detectable migration or any other position change. No acetabular fractures and no screw problems were noted. Initial peripheral gaps were observed in 11 cases (16%). Twelve cases had a postoperative polar gap less than 0.5 mm which were stabilized at 2 years postoperatively. Radiolucent line was present in at least one zone in 53% of cases and occurred most frequently in zones 1 and 3. No continuous radiolucent line greater than 2 mm was seen in any zone and radiolucent lines were stabilized 2-3 years postoperatively. Twelve hips (17.1%) had osteolysis of the acetabulum. No acetabular component was revised because of aseptic loosening. Revision arthroplasties were performed in 9 hips during follow-up. We concluded that the hemispheric porous-coated, acetabular components using press-fit and screw fixation had good results with a 5 to 9-year follow-up.  (+info)

Hepatocyte growth factor (HGF) induces interleukin-11 secretion from osteoblasts: a possible role for HGF in myeloma-associated osteolytic bone disease. (10/642)

Multiple myeloma is associated with unbalanced bone remodeling causing lytic bone lesions. Interleukin-11 (IL-11) promotes osteoclast formation and inhibits osteoblast activity and may, thus, be one factor involved in cancer-induced bone destruction. We have previously shown that myeloma cells produce hepatocyte growth factor (HGF). We now report that HGF induces IL-11 secretion from human osteoblast-like cells and from the osteosarcoma cell lines Saos-2 and HOS. In coculture experiments, both the myeloma cell line JJN-3 and primary myeloma cells from 3 patients induced IL-11 secretion from osteoblasts, whereas no induction was observed with the non-HGF producing myeloma cell line OH-2. Enhanced IL-11 induction was observed with physical contact between osteoblasts and myeloma cells as compared with experiments in which contact was prohibited by tissue inserts. Anti-HGF serum strongly reduced the myeloma cell-induced IL-11 secretion. Furthermore, we show that JJN-3 cells express HGF on the cell-surface. Removal of surface-bound HGF on JJN-3 cells reduced IL-11 production induced in cocultures. Transforming growth factor beta1 and IL-1 potentiated the effect of HGF on IL-11 secretion, whereas an additive effect was observed with tumor necrosis factor. Thus, myeloma-derived HGF can influence the bone marrow environment both as a soluble and a surface-bound factor. Furthermore, HGF emerges as a possible factor involved in myeloma bone disease by its ability to induce IL-11.  (+info)

Interleukin-1 and tumor necrosis factor receptor signaling is not required for bacteria-induced osteoclastogenesis and bone loss but is essential for protecting the host from a mixed anaerobic infection. (11/642)

Bacterial infection causes significant morbidity, mediated in part by the up-regulation of inflammatory cytokines. Cytokine induction is thought to stimulate osteolysis in conditions such as periodontal disease and otitis media. To establish the relative importance of interleukin-1 (IL-1) and tumor necrosis factor (TNF) in mediating the response to a mixed anaerobic infection, we used an in vivo model in which the dental pulp was inoculated with six anaerobic pathogens, in mice with functional deletions of receptors to IL-1 (IL-1RI(-/-)), TNF (TNFRp55(-/-)-p75(-/-)), or both (TNFRp55(-/-)-IL-1RI(-/-)). Polymorphonuclear and mononuclear phagocyte recruitment occurred to the greatest extent in TNFRp55(-/-)-IL-1RI(-/-) mice, and to a lesser extent in IL-1RI(-/-) or TNFRp55(-/-)-p75(-/-) mice, and the least in wild-type mice, demonstrating that recruitment of these phagocytes is not dependent on IL-1 or TNF receptor signaling. A similar pattern was observed for bacterial penetration into host tissue. Because it had recently been reported that TNF played a critical role in mediating lipopolysaccharide-induced bone loss, we anticipated that mice with targeted deletions of TNFRp55(-/-) would have reduced osteoclastogenesis. Surprisingly, osteolytic lesion formation was greatest in animals lacking TNF and/or IL-1 receptors. These results indicate that IL-1 or TNF receptor signaling is not required for bacteria-induced osteoclastogenesis and bone loss, but does play a critical role in protecting the host against mixed anaerobic infections.  (+info)

Myeloma progenitors in the blood of patients with aggressive or minimal disease: engraftment and self-renewal of primary human myeloma in the bone marrow of NOD SCID mice. (12/642)

The myelomagenic capacity of clonotypic myeloma cells in G-CSF mobilized blood was tested by xenotransplant. Intracardiac (IC) injection of NOD SCID mice with peripheral cells from 5 patients who had aggressive myeloma led to lytic bone lesions, human Ig in the serum, human plasma cells, and a high frequency of clonotypic cells in the murine bone marrow (BM). Human B and plasma cells were detected in BM, spleen, and blood. Injection of ex vivo multiple myeloma cells directly into the murine sternal BM (intraosseus injection [IO]) leads to lytic bone lesions, BM plasma cells, and a high frequency of clonotypic cells in the femoral BM. This shows that myeloma has spread from the primary injection site to distant BM locations. By using a cellular limiting dilution PCR assay to quantify clonotypic B lineage cells, we confirmed that peripheral myeloma cells homed to the murine BM after IC and IO injection. The myeloma progenitor undergoes self-renewal in murine BM, as demonstrated by the transfer of human myeloma to a secondary recipient mouse. For 6 of 7 patients, G-CSF mobilized cells from patients who have minimal disease, taken at the time of mobilization or after cryopreservation, included myeloma progenitors as identified by engraftment of clonotypic cells and/or lytic bone disease in mice. This indicates that myeloma progenitors are mobilized into the blood by cyclophosphamide/G-CSF. Their ability to generate myeloma in a xenotransplant model implies that such progenitors are also myelomagenic when reinfused into patients, and suggests the need for an effective strategy to purge them before transplant.  (+info)

The role of the macrophage in periprosthetic bone loss. (13/642)

Aseptic loosening after total joint replacement remains the most common reason for long-term implant failure. Macrophages activated by submicron wear particles of the polyethylene liner used in joint replacement have been shown to be the source of periprosthetic bone loss. Understanding the role of material chemistry in macrophage activation and the subsequent effects that macrophage-derived enzymes play in the degradation of implanted biomaterials is key to developing methods for prolonging the lifespan of implantable materials.  (+info)

IL-4 gene therapy for collagen arthritis suppresses synovial IL-17 and osteoprotegerin ligand and prevents bone erosion. (14/642)

Bone destruction is the most difficult target in the treatment of rheumatoid arthritis (RA). Here, we report that local overexpression of IL-4, introduced by a recombinant human type 5 adenovirus vector (Ad5E1mIL-4) prevents joint damage and bone erosion in the knees of mice with collagen arthritis (CIA). No difference was noted in the course of CIA in the injected knee joints between Ad5E1mIL-4 and the control vector, but radiographic analysis revealed impressive reduction of joint erosion and more compact bone structure in the Ad5E1mIL-4 group. Although severe inflammation persisted in treated mice, Ad5E1mIL-4 prevented bone erosion and diminished tartrate-resistant acid phosphatase (TRAP) activity, indicating that local IL-4 inhibits the formation of osteoclast-like cells. Messenger RNA levels of IL-17, IL-12, and cathepsin K in the synovial tissue were suppressed, as were IL-6 and IL-12 protein production. Osteoprotegerin ligand (OPGL) expression was markedly suppressed by local IL-4, but no loss of OPG expression was noted with Ad5E1mIL-4 treatment. Finally, in in vitro studies, bone samples of patients with arthritis revealed consistent suppression by IL-4 of type I collagen breakdown. IL-4 also enhanced synthesis of type I procollagen, suggesting that it promoted tissue repair. These findings may have significant implications for the prevention of bone erosion in arthritis.  (+info)

Interleukin-1 receptor signaling rather than that of tumor necrosis factor is critical in protecting the host from the severe consequences of a polymicrobe anaerobic infection. (15/642)

Infection of the dental pulp leads to an osteolytic lesion that results from a polymicrobial infection consisting largely of pathogenic anaerobes. Infection causes significant morbidity and mortality mediated by bacterial factors and in some cases by the up-regulation of inflammatory cytokines. The inflammatory cytokines interleukin-1 (IL-1) and tumor necrosis factor (TNF), in particular, play a complex and central role in the responses to microbial pathogens. However, relatively little is known about the significance of these cytokines in protecting the host from focal polymicrobial anaerobic infections. To establish the relative importance of IL-1 and TNF in mediating the response to a mixed anaerobic infection, we inoculated the dental pulp of mice with six anaerobic pathogens containing functional deletions of receptors to IL-1 (IL-1R1(-/-)), TNF (TNFRp55(-/-)-p75(-/-)), or both (TNFRp55(-/-)-IL-1RI(-/-)). The results indicate that IL-1 receptor signaling and TNF receptor signaling both play similarly important roles in protecting the host from local tissue damage. However, IL-1 receptor signaling is considerably more important than TNF receptor signaling in preventing the spread of infection into surrounding fascial planes, since IL-1R1(-/-) but not TNFRp55(-/-)-p75(-/-) mice exhibited significantly higher morbidity and mortality. Moreover, all of the fatal infections occurred in male mice, suggesting the importance of gender differences in limiting the impact of these infections.  (+info)

Pathophysiology of chronic bacterial osteomyelitis. Why do antibiotics fail so often? (16/642)

In this review the pathophysiology of chronic bacterial osteomyelitis is summarised, focusing on how bacteria succeed so often in overcoming both host defence mechanisms and antibiotic agents. Bacteria adhere to bone matrix and orthopaedic implants via receptors to fibronectin and to other structural proteins. They subsequently elude host defences and antibiotics by "hiding" intracellularly, by developing a slimy coat, or by acquiring a very slow metabolic rate. The presence of an orthopaedic implant also causes a local polymorphonuclear cell defect, with decreased ability to kill phagocytosed bacteria. Osteolysis is determined locally by the interaction of bacterial surface components with immune system cells and subsequent cytokine production. The increasing development of antibiotic resistance by Staphylococcus aureus and S epidermidis will probably make conservative treatment even less successful than it is now. A close interaction between orthopaedic surgeons and physicians, with combined medical and operative treatment, is to be commended.  (+info)