The ferret's vomeronasal organ and accessory olfactory bulb: effect of hormone manipulation in adult males and females. (41/321)

The male ferret, a carnivore, was recently shown to possess a vomeronasal organ (VNO). We compared the morphology of the VNO and its associated accessory olfactory bulb (AOB) in male and female ferrets that were killed in adulthood. The volume and surface area of the VNO neuroepithelium were similar in adult gonadectomized male and female ferrets regardless of whether they were treated with testosterone propionate (TP) or oil vehicle. An AOB was localized bilaterally in the medial caudal part of the olfactory bulbs of adult ferrets using soybean agglutin binding and immunostaining for luteinizing hormone-releasing hormone and tyrosine hydroxylase as well as Nissl staining of coronal, horizontal, and sagittal brain sections. There was no effect of sex or TP treatment on AOB cell layer volume in adult gonadectomized animals. We found the ferret's AOB to be more medially located and much smaller than previously reported in this species, thus highlighting the importance of using several histochemical markers to characterize this structure in any previously unexamined species. Adult male and female ferrets both have a VNO and an associated AOB. More research is needed to determine what role, if any, this accessory olfactory system plays in mediating behavioral and neuroendocrine responses to pheromones in ferrets of either sex.  (+info)

Immunohistochemical studies on the differential maturation of three types of olfactory organs in the rats. (42/321)

Differential maturation of three types of olfactory organs, the olfactory epithelium (OE), the vomeronasal organ (VNO) and the septal olfactory organ of Masera (MO), was examined immunohistochemically in embryonic and newborn rats by the use of antiprotein gene product 9.5 (PGP 9.5) serum. These olfactory organs were derived in common from the olfactory placode as neuroepithelia. In the OE, PGP 9.5-immunopositive olfactory cells first appeared at 13 days of gestation. The OE maturated completely, and showed the same cytological features as in the adult at 20 days of gestation. The MO first appeared as a dense mass of PGP 9.5-immunopositive sensory cells on the most ventrocaudal part of the nasal septum at 15 days of gestation and was evidently isolated from the OE by the decrease of immunopositive cells in the intercalated epithelium between the OE and the MO at 20 days of gestation. However, even at 7 days after birth, the MO did not complete its development and contained sensory cells aggregating in the mass. The VNO was separated from the nasal cavity at 13 days of gestation as a tubular structure of a neuroepithelium including PGP 9.5-immunopositive sensory cells. These cells gradually increased in number in the sensory epithelium of the VNO and extended their dendritic processes to the free surface at 7 days after birth. These findings clarified the differential maturation of these olfactory organs. That is, the OE completes its development before birth, while the MO and VNO after birth.  (+info)

Reappraisal of the vomeronasal system of catarrhine primates: ontogeny, morphology, functionality, and persisting questions. (43/321)

The vomeronasal organ (VNO) is a chemosensory organ that functions in sociosexual communication in many vertebrates. In strepsirhine primates and New World monkeys, the bilateral VNOs are traditionally understood to exist as a well-developed chemosensory epithelial unit. In contrast, the VNOs of catarrhine primates are thought to be absent or exist only as reduced epithelial tubes of uncertain function. However, the VNO of New World monkeys shows substantial variation in the extent of sensory epithelium. Recent findings that the chimpanzee (Pan troglodytes) possesses a VNO similar to humans suggest the variability of the VNO among haplorhine primates may be more extensive than previously thought, and perhaps more at par with that observed in chiropterans. The atypical histologic structure and location of the human/chimpanzee VNO suggest accessory glandular secretion and transport functions. Other catarrhine primates (e.g., Macaca spp.), may truly be characterized by VNO absence. Unique aspects of facial growth and development in catarrhine primates may influence the position or even presence of the VNO in adults. These recent findings demonstrate that previous investigations on some catarrhine primates may have missed the VNO and underestimated the extent of variability. As an understanding of this variation increases, our view of VNO functionality and associated terminology is changing. Further investigations are needed to consider phylogenetic implications of VNO variability and the association of craniofacial form and VNO anatomic position in primates.  (+info)

The human vomeronasal organ. III. Postnatal development from infancy to the ninth decade. (44/321)

The large literature on the human vomeronasal organ (VNO) offers little consensus as to its persistence in the adult. We have already documented the existence of the VNO from embryonic day 33 through the neonatal stages. This has now been extended to human adults: 27 cadaver nasal septa, aged 2-86 y, were either dissected or decalcified, serially sectioned, stained and examined. The consistent presence of the VNO is reported as a homologue, in the form of a duct-like structure on the nasal septum at all ages. Also reported are size variability, pronounced bilateral asymmetry, a nonchemosensory pseudostratified ciliated epithelium with considerable structural variation and generally without medial-lateral differentiation, nasal septal glands opening into the VNO lumen, a lack of correlation between postnatal age and VNO size, visualisation of the human VNO with certainty by histological means alone, and a minute opening as its only visible surface feature. The human VNO is a discrete structure that should not be confused with the nasopalatine fossa, the septal mucosal pits or VNO openings.  (+info)

Identification of non-functional human VNO receptor genes provides evidence for vestigiality of the human VNO. (45/321)

In mammals, the vomeronasal organ (VNO) contains chemosensory receptor cells that bind to pheromones and induce a variety of social and reproductive behaviors. It has been traditionally assumed that the human VNO (Jacobson's organ) is a vestigial structure, although recent studies have shown minor evidence for a structurally intact and possibly functional VNO. The presence and function of the human VNO remains controversial, however, as pheromones and VNO receptors have not been well characterized. In this study we screened a human Bacterial Artificial Chromosome (BAC) library with multiple primer sets designed from human cDNA sequences homologous to mouse VNO receptor genes. Utilizing these BAC sequences in addition to mouse VNO receptor sequences, we screened the High Throughput Genome Sequence (HTGS) database to find additional human putative VNO receptor genes. We report the identification of 56 BACs carrying 34 distinct putative VNO receptor gene sequences, all of which appear to be pseudogenes. Sequence analysis indicates substantial homology to mouse V1R and V2R VNO receptor families. Furthermore, chromosomal localization via FISH analysis and RH mapping reveal that the majority of the BACs are localized to telomeric and centromeric chromosomal localizations and may have arisen through duplication events. These data yield insight into the present state of pheromonal olfaction in humans and into the evolutionary history of human VNO receptors.  (+info)

The prairie vole vomeronasal organ is a target for gonadotropin-releasing hormone. (46/321)

Gonadotropin-releasing hormone (GnRH) is present in nervus terminalis neurons in chemosensory nerve fascicles in vertebrates. In rodents, the majority of GnRH fibers are located within vomeronasal nerves. We have shown that GnRH can alter vomeronasal receptor neuron responses to odors. In this study, using prairie voles, we tested the hypotheses that (i) GnRH-immunoreactive (-ir) neurons project to the vomeronasal organ and accessory olfactory bulb; (ii) a radioactive-labeled GnRH agonist, buserelin, binds to vomeronasal sensory neurons; and (iii) vomeronasal receptor cells express GnRH receptor mRNA as evidenced by reverse transcription-polymerase chain reaction (RT-PCR) combined with Southern blotting. In neonatal voles, GnRH-ir cell bodies and fibers were observed within the vomeronasal epithelium, vomeronasal nerves and accessory olfactory bulbs. In adult voles, GnRH-ir fibers were observed not only in the lamina propria of the vomeronasal mucosa, but also along vomeronasal nerves and in the accessory olfactory bulb. Binding of [(125)I]buserelin was observed specifically over the vomeronasal sensory epithelium, and RT-PCR/Southern blotting demonstrated GnRH receptor expression in the vomeronasal mucosa, as well as in olfactory epithelium and pterygopalatine ganglion, two additional structures containing GnRH-ir neurons of the nervus terminalis. This study supports the hypothesis that GnRH is released from nervus terminalis fibers to modulate chemosensory processes, especially those involving chemoreception in the vomeronasal organ.  (+info)

Sequence analysis of mouse vomeronasal receptor gene clusters reveals common promoter motifs and a history of recent expansion. (47/321)

We have analyzed the organization and sequence of 73 V1R genes encoding putative pheromone receptors to identify regulatory features and characterize the evolutionary history of the V1R family. The 73 V1Rs arose from seven ancestral genes around the time of mouse-rat speciation through large local duplications, and this expansion may contribute to speciation events. Orthologous V1R genes appear to have been lost during primate evolution. Exceptional noncoding homology is observed across four V1R subfamilies at one cluster and thus may be important for locus-specific transcriptional regulation.  (+info)

Patch-clamp analysis of voltage-activated and chemically activated currents in the vomeronasal organ of Sternotherus odoratus (stinkpot/musk turtle). (48/321)

The electrophysiological basis of chemical communication in the specialized olfactory division of the vomeronasal (VN) organ is poorly understood. In total, 198 patch-clamp recordings were made from 42 animals (Sternotherus odoratus, the stinkpot/musk turtle) to study the electrically and chemically activated properties of VN neurons. The introduction of tetramethylrhodamine-conjugated dextran into the VN orifice permitted good visualization of the vomeronasal neural epithelium prior to dissociating it into single neurons. Basic electrical properties of the neurons were measured (resting potential, -54.5 +/- 2.7 mV, N=11; input resistance, 6.7 +/- 1.4 G Omega, N=25; capacitance, 4.2 +/- 0.3 pF, N=22; means +/- S.E.M.). The voltage-gated K(+) current inactivation rate was significantly slower in VN neurons from males than in those from females, and K(+) currents in males were less sensitive (greater K(i)) to tetraethylammonium. Vomeronasal neurons were held at a holding potential of -60 mV and tested for their response to five natural chemicals, female urine, male urine, female musk, male musk and catfish extract. Of the 90 VN neurons tested, 33 (34 %) responded to at least one of the five compounds. The peak amplitude of chemically evoked currents ranged from 4 to 180 pA, with two-thirds of responses less than 25 pA. Urine-evoked currents were of either polarity, whereas musk and catfish extract always elicited only inward currents. Urine applied to neurons harvested from female animals evoked currents that were 2-3 times larger than those elicited from male neurons. Musk-evoked inward currents were three times the magnitude of urine- or catfish-extract-evoked inward currents. The calculated breadth of responsiveness for neurons presented with this array of five chemicals indicated that the mean response spectrum of the VN neurons is narrow (H metric 0.11). This patch-clamp study indicates that VN neurons exhibit sexual dimorphism in function and specificity in response to complex natural chemicals.iol  (+info)