Mechanism of inhibition of the human immunodeficiency virus type 1 reverse transcriptase by d4TTP: an equivalent incorporation efficiency relative to the natural substrate dTTP. (25/803)

Among the clinically used nucleoside analogue inhibitors that target human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT), there is little detailed mechanistic information on the interactions of 2',3'-didehydro-2', 3'-dideoxythymidine-5'-triphosphate (d4TTP) with the enzyme. primer-template complex and how these interactions compare with those of the natural substrate, dTTP. Using a pre-steady-state kinetic analysis, we found that d4TTP was incorporated by HIV-1 RT just as efficiently as dTTP during both DNA- and RNA-dependent DNA synthesis. To our knowledge, these results represent the first observation of a 3'-modified nucleoside triphosphate analogue that has an incorporation efficiency comparable to that observed for the natural substrate during DNA synthesis by HIV-1 RT. This information provides a mechanistic basis for understanding the inhibition of HIV-1 RT by d4TTP as well as insight into the clinically observed lack of d4T resistance mutations in HIV-1 RT isolated from AIDS patients.  (+info)

Site-specific incorporation of nucleoside analogs by HIV-1 reverse transcriptase and the template grip mutant P157S. Template interactions influence substrate recognition at the polymerase active site. (26/803)

Studies of drug-resistant reverse transcriptases (RTs) reveal the roles of specific structural elements and amino acids in polymerase function. To characterize better the effects of RT/template interactions on dNTP substrate recognition, we examined the sensitivity of human immunodeficiency virus type 1 (HIV-1) RT containing a new mutation in a "template grip" residue (P157S) to the 5'-triphosphates of (-)-beta-2',3'-dideoxy-3'-thiacytidine (3TC), (-)-beta-2',3'-dideoxy-5-fluoro-3'-thiacytidine (FTC), and 3'-azido-3'-deoxythymidine (AZT). A primer extension assay was used to monitor quantitatively drug monophosphate incorporation opposite each of multiple target sites. Wild-type and P157S RTs had similar catalytic activities and processivities on heteropolymeric RNA and DNA templates. When averaged over multiple template sites, P157S RT was 2-7-fold resistant to the 5'-triphosphates of 3TC, FTC, and AZT. Each drug triphosphate inhibited polymerization more efficiently on the DNA template compared with an RNA template of identical sequence. Moreover, chain termination by 3TC and FTC was strongly influenced by template sequence context. Incorporation of FTC and 3TC monophosphate varied up to 10-fold opposite 7 different G residues in the DNA template, and the P157S mutation altered this site specificity. In summary, these data identify Pro(157) as an important residue affecting nucleoside analog resistance and suggest that interactions between RT and the template strand influence dNTP substrate recognition at the RT active site. Our findings are discussed within the context of the HIV-1 RT structure.  (+info)

Radiosensitivity of thymidylate synthase-deficient human tumor cells is affected by progression through the G1 restriction point into S-phase: implications for fluoropyrimidine radiosensitization. (27/803)

Recent studies of fluoropyrimidine (FP)-mediated radiosensitization (RS) have focused on the molecular mechanisms underlying regulation of the cell cycle, particularly at the G1-S transition. Although thymidylate synthase (TS) inhibition by FP is necessary, we hypothesize that FP-RS is temporally dependent on progression of cells into S-phase under conditions of altered deoxynucleotide triphosphate pools, particularly an increased dATP:dTTP ratio, which subsequently results in enhanced DNA fragmentation and cell death. To better understand the mechanism of FP-RS, we characterized the cellular and biochemical responses to ionizing radiation (IR) alone, using different synchronization techniques in two isogenic, TS-deficient mutant cell lines, JH-1 (TS-) and JH-2 (Thy4), derived previously from a human colon cancer cell line. After G0 synchronization by leucine deprivation, these clones differ under subsequent growth conditions and dThd withdrawal: JH-2 cells have an intact G1 arrest (>72 h) and delayed cell death (>96 h), whereas JH-1 cells progress rapidly into early S-phase and undergo acute cell death (<24 h). No difference in the late S-phase and G2-M cell populations were noted between these growth-stimulated, G0-synchronized TS-deficient cell lines with dThd withdrawal. Biochemically, the intracellular ratio of dATP:dTTP increased substantially in JH-1 cells as cells progressed into early S-phase compared with JH-2 cells, which remained in G1 phase. Synchronized JH-1 cells showed significantly decreased clonogenic survival and an increase in DNA fragmentation after IR when compared with JH-2 cells. RS was demonstrated by an increase in alpha and decrease in beta, using linear quadratic analyses. An alternative synchronization technique used mimosine to induce a block in late G1, close to G1-S border. Both JH-1 and JH-2 cells, synchronized in late G1 and following growth stimulation, now progressed into S-phase identically (<24 h), with similarly increased dATP:dTTP ratios under dThd withdrawal conditions. These late G1-synchronized JH-1 and JH-2 cells also showed a comparable reduction in clonogenic survival and similar patterns of increased DNA fragmentation following IR. We suggest, based on the cellular and biochemical differences in response to IR between G0- and late G1-synchronized cells, that S-phase progression through the G1 restriction point under an altered (increased) dATP:dTTP ratio is a major determinant of FP-RS.  (+info)

Isolation of an inhibitor of DNA synthesis specific for normal and malignant mammary cells. (28/803)

A small-molecular-weight inhibitor of DNA synthesis, specific for normal and malignant mammary cells but devoid of species-specificity, has been isolated from bovine mammary glands. This factor has very little effect on RNA metabolism.  (+info)

Thymidine diphosphate-6-deoxy-L-lyxo-4-hexulose reductase synthesizing dTDP-6-deoxy-L-talose from Actinobacillus actinomycetemcomitans. (29/803)

The serotype c-specific polysaccharide antigen of Actinobacillus actinomycetemcomitans NCTC 9710 contains an unusual sugar, 6-deoxy-L-talose, which has been identified as a constituent of cell wall components in some bacteria. Two genes coding for thymidine diphosphate (dTDP)-6-deoxy-L-lyxo-4-hexulose reductases were identified in the gene cluster required for biosynthesis of serotype c-specific polysaccharide. Both dTDP-6-deoxy-L-lyxo-4-hexulose reductases were overproduced and purified from Escherichia coli transformed with the plasmids containing these genes. The sugar nucleotides converted by both reductases were purified by reversed-phase high performance liquid chromatography and identified by (1)H nuclear magnetic resonance and gas-liquid chromatography. The results indicated that one of two reductases produced dTDP-6-deoxy-L-talose and the other produced dTDP-L-rhamnose (dTDP-6-deoxy-L-mannose). The amino acid sequence of the dTDP-6-deoxy-L-lyxo-4-hexulose reductase forming dTDP-6-deoxy-L-talose shared only weak homology with that forming dTDP-L-rhamnose, despite the fact that these two enzymes catalyze the reduction of the same substrate and the products are determined by the stereospecificity of the reductase activity. Neither the gene for dTDP-6-deoxy-L-talose biosynthesis nor its corresponding protein product has been found in other bacteria; this biosynthetic pathway is identified here for the first time.  (+info)

The gastric H,K-ATPase blocker lansoprazole is an inhibitor of chloride channels. (30/803)

1. It was postulated that swelling dependent chloride channels are involved in the proton secretion of parietal cells. Since omeprazole, lansoprazole and its acid activated sulphenamide form AG2000 are structurally related to phenol derivatives known to block swelling dependent chloride channels, we set out to test, whether these substances--which are known to block the H,K-ATPase--could also lead to an inhibition of swelling-dependent chloride channels. Swelling-dependent chloride channels--characterized in many different cell types--show highly conserved biophysical and pharmacological features, therefore we investigated the effect of omeprazole, lansoprazole and its acid activated sulphenamide form AG2000 on swelling-dependent chloride channels elicited in fibroblasts, after the reduction of the extracellular osmolarity. 2. Omeprazole, lansoprazole and its acid activated sulphenamide form AG2000 are able to block swelling-dependent chloride channels (IClswell). 3. Lansoprazole and its protonated metabolite AG2000 act on at least two different sites of the IClswell protein: on an extracellular site which seems to be in a functional proximity to the nucleotide binding site, and on an intracellular site which allows the formation of disulfide-bridges. 4. The inhibition of the proton pump and the simultaneous blocking of chloride channels by omeprazole, lansoprazole and its acid activated sulphenamide form AG2000, as described here could be an effective mode to restrict proton secretion in parietal cells.  (+info)

Study of interaction of human replication factor A with DNA using new photoreactive analogs of dTTP. (31/803)

Replication factor A (RPA) is a protein that binds single-stranded DNA in eukaryotic cells; it participates in replication, repair, and recombination of DNA. RPA is composed of three subunits with molecular masses 70 (p70), 32 (p32), and 14 kD (p14). The photoaffinity labeling method was used to study the interaction of RPA with the 3;-end of duplex DNA containing extended 5;-end of a single strand. We have synthesized dTTP analogs containing photoreactive 2,3,5,6-tetrafluoro-4-azidobenzoyl group attached to the 5th position of the uracil residue with linkers of variable length (9, 11, and 13 atom chains). Using these analogs and dTTP analog containing the same photoreactive residue attached to the 5th position of the uracil residue with a 4-atom linker, a number of oligonucleotide primers carrying a single photoreactive group on the 3;-end were enzymatically synthesized. Using the complex of the photoreactive primers with DNA template containing extended 19-base 5;-end, human RPA was photoaffinity modified. The primers were covalently bound to the p70 and p32 subunits of RPA and the p14 subunit was not labeled by the primers. The data are discussed considering the previously suggested model of interaction of RPA with DNA during replication.  (+info)

Deoxythymidine nucleotide metabolism in Bacillus subtilis W23 infected with bacteriophage SP1Oc: preliminary evidence that dTMP in SP10c DNA is synthesized by a novel, bacteriophage-specific mechanism. (32/803)

Despite the fact that mature SP10c DNA contains dTMP, the acid-soluble fraction of infected cells contained no dTTP during the interval of phage replication. However, infected cells contained normal cellular levels of dATP, dGTP, and dCTP. Upon infection of deoxythymidine-starved Bacillus subtilis M160 (a deoxythymidine-requiring mutant of B. subtilis W23), mature phage DNA with a normal dTMP content was made. SP10c codes for an enzyme that seems to catalyze the tetrahydrofolate-dependent transfer of 1-carbon fragments to the 5 position of dUMP. The transfer of 1-carbon fragments is not accompanied by oxidation of tetrahydrofolage to dihydrofolate, implying that the enzyme in question is not a dTMP synthetase. It is proposed that dTMP in mature SP10c DNA is derived by the postreplicational modification of some other nucleotide and not by the direct incorporation of dTTP into DNA.  (+info)