Redox cycling of phenol induces oxidative stress in human epidermal keratinocytes. (49/3723)

A variety of phenolic compounds are utilized for industrial production of phenol-formaldehyde resins, paints, lacquers, cosmetics, and pharmaceuticals. Skin exposure to industrial phenolics is known to cause skin rash, dermal inflammation, contact dermatitis, leucoderma, and cancer promotion. The biochemical mechanisms of cytotoxicity of phenolic compounds are not well understood. We hypothesized that enzymatic one-electron oxidation of phenolic compounds resulting in the generation of phenoxyl radicals may be an important contributor to the cytotoxic effects. Phenoxyl radicals are readily reduced by thiols, ascorbate, and other intracellular reductants (e.g., NADH, NADPH) regenerating the parent phenolic compound. Hence, phenolic compounds may undergo enzymatically driven redox-cycling thus causing oxidative stress. To test the hypothesis, we analyzed endogenous thiols, lipid peroxidation, and total antioxidant reserves in normal human keratinocytes exposed to phenol. Using a newly developed cis-parinaric acid-based procedure to assay site-specific oxidative stress in membrane phospholipids, we found that phenol at subtoxic concentrations (50 microM) caused oxidation of phosphatidylcholine and phosphatidylethanolamine (but not of phosphatidylserine) in keratinocytes. Phenol did not induce peroxidation of phospholipids in liposomes prepared from keratinocyte lipids labeled by cis-parinaric acid. Measurements with ThioGlo-1 showed that phenol depleted glutathione but did not produce thiyl radicals as evidenced by our high-performance liquid chromatography measurements of GS.-5, 5-dimethyl1pyrroline N-oxide nitrone. Additionally, phenol caused a significant decrease of protein SH groups. Luminol-enhanced chemiluminescence assay demonstrated a significant decrease in total antioxidant reserves of keratinocytes exposed to phenol. Incubation of ascorbate-preloaded keratinocytes with phenol produced an electron paramagnetic resonance-detectable signal of ascorbate radicals, suggesting that redox-cycling of one-electron oxidation products of phenol, its phenoxyl radicals, is involved in the oxidative effects. As no cytotoxicity was observed in keratinocytes exposed to 50 microM or 500 microM phenol, we conclude that phenol at subtoxic concentrations causes significant oxidative stress.  (+info)

Up-regulation of the chondrogenic Sox9 gene by fibroblast growth factors is mediated by the mitogen-activated protein kinase pathway. (50/3723)

Recent experiments have established that Sox9 is required for chondrocyte differentiation. Here, we show that fibroblast growth factors (FGFs) markedly enhance Sox9 expression in mouse primary chondrocytes as well as in C3H10T1/2 cells that express low levels of Sox9. FGFs also strongly increase the activity of a Sox9-dependent chondrocyte-specific enhancer in the gene for collagen type II. Transient transfection experiments using constructs encoding FGF receptors strongly suggested that all FGF receptors, FGFR1-R4, can transduce signals that lead to the increase in Sox9 expression. The increase in Sox9 levels induced by FGF2 was inhibited by a specific mitogen-activated protein kinase kinase (MAPKK)/mitogen-activated protein kinase/ERK kinase (MEK) inhibitor U0126 in primary chondrocytes. In addition, coexpression of a dual-specificity phosphatase, CL100/MKP-1, that is able to dephosphorylate and inactivate mitogen-activated protein kinases (MAPKs) inhibited the FGF2-induced increase in activity of the Sox9-dependent enhancer. Furthermore, coexpression of a constitutively active mutant of MEK1 increased the activity of the Sox9-dependent enhancer in primary chondrocytes and C3H10T1/2 cells, mimicking the effects of FGFs. These results indicate that expression of the gene for the master chondrogenic factor Sox9 is stimulated by FGFs in chondrocytes as well as in undifferentiated mesenchymal cells and strongly suggest that this regulation is mediated by the MAPK pathway. Because Sox9 is essential for chondrocyte differentiation, we propose that FGFs and the MAPK pathway play an important role in chondrogenesis.  (+info)

Effect of chronic administration of an aromatase inhibitor to adult male rats on pituitary and testicular function and fertility. (51/3723)

The aim of the present study was to evaluate the effects of the administration of a potent non-steroidal aromatase inhibitor, anastrozole, on male reproductive function in adult rats. As anastrozole was to be administered via the drinking water, a preliminary study was undertaken in female rats and showed that this route of administration was effective in causing a major decrease in uterine weight (P<0.02). In an initial study in male adult rats, anastrozole (100 mg/l or 400 mg/l) was administered via the drinking water for a period of 9 weeks. Treatment with either dose resulted in a significant increase ( approximately 10%) in testis weight and increase in plasma FSH concentrations (P<0.01) throughout the 9 weeks. Mating was altered in both groups of anastrozole-treated rats, as they failed to produce copulatory plugs. Histological evaluation of the testes from anastrozole-treated rats revealed that spermatogenesis was grossly normal. In a more detailed study, adult rats were treated with 200 mg/l anastrozole via the drinking water for periods ranging from 2 weeks to 1 year. Plasma FSH and testosterone concentrations were increased significantly (P<0.001) during the first 19 weeks of treatment. However, LH concentrations were increased only at 19 weeks (P<0.001) in anastrozole-treated rats, and this coincided with a further increase in circulating and intratesticular testosterone concentrations (P<0.05). No consistent change in inhibin-B concentrations was observed during the study. Suppression of plasma oestradiol concentrations could not be demonstrated in anastrozole-treated animals, but oestradiol concentrations in testicular interstitial fluid were reduced by 18% (P<0.01). Mating was again inhibited by anastrozole treatment, but could be restored by s.c. injection of oestrogen, enabling demonstration that rats treated for 10 weeks or 9 months were still fertile. Testis weight was increased by 19% and 6% after treatment for 19 weeks and 1 year, respectively. Body weight was significantly decreased (P<0.01) by 19 weeks of anastrozole treatment; after 1 year the animals appeared to have less fat as indicated by a 27% decrease in the weight of the gonadal fat pad. The majority of anastrozole-treated animals had testes with normal spermatogenesis but, occasionally, seminiferous tubules showed abnormal loss of germ cells or contained only Sertoli cells. Ten percent of anastrozole-treated animals had testes that appeared to contain only Sertoli cells, and one rat had 'giant' testes in which the tubule lumens were severely dilated. Morphometric analysis of the normal testes at 19 weeks showed no difference in the number of Sertoli cells or germ cells, or the percentage volumes of the seminiferous epithelium, tubule lumens and interstitium between control and anastrozole-treated rats. On the basis of the present findings, oestrogen appears to be involved in the regulation of FSH secretion and testosterone production, and is also essential for normal mating behaviour in male rats. Furthermore, these data suggest that the brain and the hypothalamo-pituitary axis are considerably more susceptible than is the testis to the effects of an aromatase inhibitor. Anastrozole treatment has resulted in a model of brain oestrogen insufficiency.  (+info)

Effects of UV light and tumor promoters on endogenous vitamin E status in mouse skin. (52/3723)

Recent reports indicate that both orally administered and topically applied alpha-tocopherol (vitamin E, TH) prevent UVB-induced skin carcinogenesis in mice. Because UVB exposure causes the formation of oxidants associated with tumor promotion, epidermal TH status may be an important determinant of susceptibility to photocarcinogenesis. To test this hypothesis, we studied the status of epidermal TH in C3H mice following exposure to single and repeated UVB exposures at doses typical of chronic photocarcinogenesis protocols. Exposure of mice to a single 13 kJ/m(2) dose over 60 min resulted in no acute depletion of epidermal TH and a modest increase in TH within 6-12 h. Daily exposure to 6.5 kJ/m(2) over 30 min resulted in a gradual increase in epidermal TH, which reached 5-fold after five daily exposures. The increase in epidermal TH was accompanied by an increase in the TH oxidation products alpha-tocopherolquinone (TQ) and alpha-tocopherolhydroquinone (THQ). We also studied the effect of the prooxidant chemical tumor promoter benzoyl peroxide and the prooxidant azo initiators azobis(amidinopropane HCl) and azobis(2, 4-dimethylvaleronitrile). Topical application of these prooxidant chemicals acutely oxidized epidermal TH to TQ and THQ. Topical treatments with the phorbol ester tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) increased epidermal TH levels without producing a significant accumulation of TH oxidation products. The results indicate that UVB and tumor promoting chemicals all exert qualitatively different effects on epidermal TH status and that UVB and TPA trigger an adaptive response involving epidermal TH accumulation.  (+info)

Acute inhibition of oestrogen biosynthesis does not affect serum leptin levels in young men. (53/3723)

OBJECTIVE: Leptin plays an important role in the regulation of reproduction. To explore the contribution of oestradiol to serum leptin levels in men, we measured the concentrations of serum leptin and insulin after inhibition of oestrogen biosynthesis by selective blockade of the aromatase enzyme. DESIGN: The study had a double-blind parallel group design. METHODS: The aromatase inhibitor, MPV 2213ad, was given to eight healthy male volunteers as a single dose of 100mg. Eight men received placebo. Serum leptin and insulin were determined from blood samples collected at 0800h, 1600h and 2000h both on the actual test day (day 0) and on the previous day (day -1), and from single blood samples taken in the morning of days 1, 2, 4 and 7. Changes in serum leptin were correlated with those seen in serum oestradiol, testosterone, LH, FSH, cortisol and aldosterone, which were determined earlier. RESULTS: After the aromatase inhibitor administration, mean serum oestradiol concentration was reduced by 74% from the baseline compared with a 19% reduction in the placebo group (P for difference <0.001), and returned to pre-treatment levels within four days. Despite marked changes in serum oestradiol and sustained elevations in serum testosterone, LH and FSH concentrations, serum leptin concentrations were similar in the group receiving the aromatase inhibitor and in the placebo group. We found a weak correlation between serum oestradiol and leptin, which could not be reproduced when the percentage changes in these variables were analysed. CONCLUSION: Marked short-term reduction in serum oestradiol concentration has no effect on serum leptin levels in young men.  (+info)

MEK activity regulates negative selection of immature CD4+CD8+ thymocytes. (54/3723)

CD4+CD8+ thymocytes are either positively selected and subsequently mature to CD4 single positive (SP) or CD8 SP T cells, or they die by apoptosis due to neglect or negative selection. This clonal selection is essential for establishing a functional self-restricted T cell repertoire. Intracellular signals through the three known mitogen-activated protein (MAP) kinase pathways have been shown to selectively guide positive or negative selection. Whereas the c-Jun N-terminal kinase and p38 MAP kinase regulate negative selection of thymocytes, the extracellular signal-regulated kinase (ERK) pathway is required for positive selection and T cell lineage commitment. In this paper, we show that the MAP/ERK kinase (MEK)-ERK pathway is also involved in negative selection. Thymocytes from newborn TCR transgenic mice were cultured with TCR/CD3epsilon-specific Abs or TCR-specific agonist peptides to induce negative selection. In the presence of the MEK-specific pharmacological inhibitors PD98059 or UO126, cell recovery was enhanced and deletion of DP thymocytes was drastically reduced. Furthermore, development of CD4 SP T cells was blocked, but differentiation of mature CD8 SP T cells proceeded in the presence of agonist peptides when MEK activity was blocked. Thus, our data indicate that the outcome between positively and negatively selecting signals is critically dependent on MEK activity.  (+info)

Inhibition of CD3/CD28-mediated activation of the MEK/ERK signaling pathway represses replication of X4 but not R5 human immunodeficiency virus type 1 in peripheral blood CD4(+) T lymphocytes. (55/3723)

Binding of human immunodeficiency virus type 1 (HIV-1) to CD4 receptors induces multiple cellular signaling pathways, including the MEK/ERK cascade. While the interaction of X4 HIV-1 with CXCR4 does not seem to activate this pathway, viruses using CCR5 for entry efficiently activate MEK/ERK kinases (W. Popik, J. E. Hesselgesser, and P. M. Pitha, J. Virol. 72:6406-6413, 1998; W. Popik and P. M. Pitha, Virology 252:210-217, 1998). Since the importance of MEK/ERK in the initial steps of viral replication is poorly understood, we have examined the role of MEK/ERK signaling in the CD3- and CD28 (CD3/CD28)-mediated activation of HIV-1 replication in resting peripheral blood CD4(+) T lymphocytes infected with X4 or R5 HIV-1. We have found that the MEK/ERK inhibitor U0126 selectively inhibited CD3/CD28-stimulated replication of X4 HIV-1, while it did not affect the replication of R5 HIV-1. Inhibition of the CD3/CD28-stimulated MEK/ERK pathway did not affect the formation of the early proviral transcripts in cells infected with either X4 or R5 HIV-1, indicating that virus reverse transcription is not affected in the absence of MEK/ERK signaling. In contrast, the levels of nuclear provirus in cells infected with X4 HIV-1, detected by the formation of circular proviral DNA, was significantly lower in cells stimulated in the presence of MEK/ERK inhibitor than in the absence of the inhibitor. However, in cells infected with R5 HIV-1, the inhibition of the MEK/ERK pathway did not affect nuclear localization of the proviral DNA. These data suggest that the nuclear import of X4, but not R5, HIV-1 is dependent on a CD3/CD28-stimulated MEK/ERK pathway.  (+info)

Regulation of cutaneous allergic reaction by odorant inhalation. (56/3723)

Olfactory stimuli modulate emotional conditions and the whole body immune system. Effects of odorant inhalation on cutaneous immune reaction were examined. Contact hypersensitivity to 2,4, 6-trinitrochlorobenzene was elicited in C57BL/6 mice. The reaction was suppressed at both the induction and elicitation phases by exposure to an odorant, citralva. Topical application of citralva or lyral/lilial did not affect the reaction. The suppressive effect of citralva was more potent than that of another odorant, lyral/lilial. Citralva decreased the number of epidermal Langerhans cells, whereas lyral/lilial had a weak effect. Citralva but not lyral/lilial induced plasma corticosterone. Glucocorticoid receptor antagonist abrogated the suppressive effect of citralva on contact hypersensitivity. Serum interleukin-12 was downregulated by exposure to citralva or lyral/lilial. These data demonstrate that olfactory stimuli regulate the cutaneous immune system.  (+info)