Did Mozart die of kidney disease? A review from the bicentennial of his death. (65/850)

There has been a tremendous interest in the circumstances of Mozart's death. Theories of head trauma, poisoning, heart disease, and most prominently, renal failure have all appeared recently in scholarly musicology publications, the lay press, and the medical literature. The purpose of this article is to present the evidence behind each of these theories. Although this review cannot be considered comprehensive, with the overview provided, it will be shown that few conclusions can be drawn.  (+info)

Characterization of deficits in pitch perception underlying 'tone deafness'. (66/850)

Congenital amusia is a disorder characterized by life-long, selective deficits in the perception of music. This study examined pitch-perception abilities in a group of 10 adults with this disorder. Tests were administered that assessed fine-grained pitch perception by determining thresholds both for the detection of continuous and segmented pitch changes, and for the recognition of pitch direction. Tests were also administered that assessed the perception of more complex pitch patterns, using pitch-sequence comparison tasks. In addition, the perceptual organization of pitch was also examined, using stream segregation tasks that assess the assignment of sounds differing in pitch to one or two distinct perceptual sources. In comparison with 10 control subjects, it was found that the participants with congenital amusia exhibited deficits both at the level of detecting fine-grained differences in pitch, and at the level of perceiving patterns in pitch. In contrast, no abnormalities were identified in the perceptual organization of pitch. The pitch deficits identified are able to account for the music perception difficulties in this disorder, and implicate deficient cortical processing.  (+info)

Nonlinear analysis of EEG signals at different mental states. (67/850)

BACKGROUND: The EEG (Electroencephalogram) is a representative signal containing information about the condition of the brain. The shape of the wave may contain useful information about the state of the brain. However, the human observer can not directly monitor these subtle details. Besides, since bio-signals are highly subjective, the symptoms may appear at random in the time scale. Therefore, the EEG signal parameters, extracted and analyzed using computers, are highly useful in diagnostics. This work discusses the effect on the EEG signal due to music and reflexological stimulation. METHODS: In this work, nonlinear parameters like Correlation Dimension (CD), Largest Lyapunov Exponent (LLE), Hurst Exponent (H) and Approximate Entropy (ApEn) are evaluated from the EEG signals under different mental states. RESULTS: The results obtained show that EEG to become less complex relative to the normal state with a confidence level of more than 85% due to stimulation. CONCLUSIONS: It is found that the measures are significantly lower when the subjects are under sound or reflexologic stimulation as compared to the normal state. The dimension increases with the degree of the cognitive activity. This suggests that when the subjects are under sound or reflexologic stimuli, the number of parallel functional processes active in the brain is less and the brain goes to a more relaxed state  (+info)

Contact dermatitis and other skin conditions in instrumental musicians. (68/850)

BACKGROUND: The skin is important in the positioning and playing of a musical instrument. During practicing and performing there is a permanent more or less intense contact between the instrument and the musician's skin. Apart from aggravation of predisposed skin diseases (e.g., atopic eczema or psoriasis) due to music-making, specific dermatologic conditions may develop that are directly caused by playing a musical instrument. METHODS: To perform a systematic review on instrument-related skin diseases in musicians we searched the PubMed database without time limits. Furthermore we studied the online bibliography "Occupational diseases of performing artist. A performing arts medicine bibliography. October, 2003" and checked references of all selected articles for relevant papers. RESULTS: The most prevalent skin disorders of instrumental musicians, in particular string instrumentalists (e.g., violinists, cellists, guitarists), woodwind players (e.g., flautists, clarinetists), and brass instrumentalists (e.g., trumpeters), include a variety of allergic contact sensitizations (e.g., colophony, nickel, and exotic woods) and irritant (physical-chemical noxae) skin conditions whose clinical presentation and localization are usually specific for the instrument used (e.g., "fiddler's neck", "cellist's chest", "guitar nipple", "flautist's chin"). Apart from common callosities and "occupational marks" (e.g., "Garrod's pads") more or less severe skin injuries may occur in musical instrumentalists, in particular acute and chronic wounds including their complications. Skin infections such as herpes labialis seem to be a more common skin problem in woodwind and brass instrumentalists. CONCLUSIONS: Skin conditions may be a significant problem not only in professional instrumentalists, but also in musicians of all ages and ability. Although not life threatening they may lead to impaired performance and occupational hazard. Unfortunately, epidemiological investigations have exclusively been performed on orchestra musicians, though the prevalence of instrument-related skin conditions in other musician groups (e.g., jazz and rock musicians) is also of interest. The practicing clinician should be aware of the special dermatologic problems unique to the musical instrumentalist. Moreover awareness among musicians needs to be raised, as proper technique and conditioning may help to prevent affection of performance and occupational impairment.  (+info)

Sequential effects of increasing propofol sedation on frontal and temporal cortices as indexed by auditory event-related potentials. (69/850)

BACKGROUND: It is an open question whether cognitive processes of auditory perception that are mediated by functionally different cortices exhibit the same sensitivity to sedation. The auditory event-related potentials P1, mismatch negativity (MMN), and early right anterior negativity (ERAN) originate from different cortical areas and reflect different stages of auditory processing. The P1 originates mainly from the primary auditory cortex. The MMN is generated in or in the close vicinity of the primary auditory cortex but is also dependent on frontal sources. The ERAN mainly originates from frontal generators. The purpose of the study was to investigate the effects of increasing propofol sedation on different stages of auditory processing as reflected in P1, MMN, and ERAN. METHODS: The P1, the MMN, and the ERAN were recorded preoperatively in 18 patients during four levels of anesthesia adjusted with target-controlled infusion: awake state (target concentration of propofol 0.0 microg/ml), light sedation (0.5 microg/ml), deep sedation (1.5 microg/ml), and unconsciousness (2.5-3.0 microg/ml). Simultaneously, propofol anesthesia was assessed using the Bispectral Index. RESULTS: Propofol sedation resulted in a progressive decrease in amplitudes and an increase of latencies with a similar pattern for MMN and ERAN. MMN and ERAN were elicited during sedation but were abolished during unconsciousness. In contrast, the amplitude of the P1 was unchanged by sedation but markedly decreased during unconsciousness. CONCLUSION: The results indicate differential effects of propofol sedation on cognitive functions that involve mainly the auditory cortices and cognitive functions that involve the frontal cortices.  (+info)

Distributed auditory cortical representations are modified when non-musicians are trained at pitch discrimination with 40 Hz amplitude modulated tones. (70/850)

Several functional brain attributes reflecting neocortical activity have been found to be enhanced in musicians compared to non-musicians. Included are the N1m evoked magnetic field, P2 and right-hemispheric N1c auditory evoked potentials, and the source waveform of the magnetically recorded 40 Hz auditory steady state response (SSR). We investigated whether these functional brain attributes measured by EEG are sensitive to neuroplastic remodeling in non-musician subjects. Adult non-musicians were trained for 15 sessions to discriminate small changes in the carrier frequency of 40 Hz amplitude modulated pure tones. P2 and N1c auditory evoked potentials were separated from the SSR by signal processing and found to localize to spatially differentiable sources in the secondary auditory cortex (A2). Training enhanced the P2 bilaterally and the N1c in the right hemisphere where auditory neurons may be specialized for processing of spectral information. The SSR localized to sources in the region of Heschl's gyrus in primary auditory cortex (A1). The amplitude of the SSR (assessed by bivariate T2 in 100 ms moving windows) was not augmented by training although the phase of the response was modified for the trained stimuli. The P2 and N1c enhancements observed here and reported previously in musicians may reflect new tunings on A2 neurons whose establishment and expression are gated by input converging from other regions of the brain. The SSR localizing to A1 was more resistant to remodeling, suggesting that its amplitude enhancement in musicians may be an intrinsic marker for musical skill or an early experience effect.  (+info)

Right temporal cortex is critical for utilization of melodic contextual cues in a pitch constancy task. (71/850)

Pitch constancy, perceiving the same pitch from tones with differing spectral shapes, requires one to extract the fundamental frequency from two sets of harmonics and compare them. We previously showed this difficult task to be easier when tonal context is present, presumably because the context creates a tonal reference point from which to judge the test tone. The present study assessed the role of the right auditory cortex in using tonal context for pitch judgements. Thirty-six patients with focal brain excisions of the right or left anterior temporal lobe (RT, LT) and 12 matched control participants (NC) made pitch judgements on complex tones that could differ in fundamental frequency and/or spectral shape. This task was performed in isolation and within a melodic context. The RT group showed impairments both on trials in which extraction of pitch from differing spectral shapes was required (different-timbre trials) and when this was not required (same-timbre trials). All groups performed poorly in the isolated condition, but improved with melodic context. Degree of improvement varied in that the LT group performed normally, whereas the RT group was not able to obtain the same amount of facilitation from the melodic context. In particular, melodic context did not facilitate the RT group's performance on different-timbre trials. Excisions within Heschl's gyrus did not affect these results, suggesting that the impairments were due to the removal of the anterior temporal cortex. The results of this study therefore implicate right anterior auditory cortical areas in making pitch judgements relative to tones that were heard previously. We propose that auditory association areas located on the anterior portion of the superior temporal gyrus, an area with connections to frontal regions implicated in working memory, could be involved in holding and integrating tonal information.  (+info)

Contributions of non-occupational activities to total noise exposure of construction workers. (72/850)

This paper describes how exposures received during routine and episodic non-occupational activities contribute to total noise exposure in a group of occupationally exposed workers. Two-hundred and sixty-six construction apprentices enrolled in a longitudinal hearing loss study and completed questionnaires at 1 yr of follow-up to determine their episodic activities (e.g. concert attendance, power tool use, firearms exposure). Noise exposure levels for these episodic exposures were determined from the published literature. Routine activities were assessed using activity cards filled out over 530 subject-days, along with noise dosimetry measurements made over 124 subject-days of measurement. Equivalent Leq exposure levels were then calculated for specific activities. These activity-specific Leq values were combined into estimated individual annual Leq exposure levels for the 6760 nominal annual non-occupational hours in a year (LAeq6760h), which were then transformed into equivalent levels for a 2000 h exposure period (LA2000hn) for comparison with occupational noise exposure risk criteria. The mean non-occupational LAeq6760h exposure values for the cohort ranged from 56 to 87 dBA (equivalent LA2000hn 62-93 dBA). At the mid range of the routine and episodic activity exposure level distribution, the mean LAeq6760h was 73 dBA (LA2000hn 78 dBA). Nineteen percent of the LA2000hn non-occupational exposures exceeded 85 dBA, the generally recommended occupational limit for a 2000 h workyear, at the mid-range of exposure levels. Due to a lack of available data, firearms use could not be incorporated into the total noise exposure estimates. However, firearms users reported more exposure to other noisy non-occupational activities and had statistically significantly higher estimated exposure levels even without including their firearms exposure than did non-shooters. When compared with the high levels of occupational noise found in construction, non-occupational noise exposures generally present little additional exposure for most workers. However, they may contribute significantly to overall exposure in the subset of workers who frequently participate in selected noisy activities.  (+info)