Short-term synchronization of intercostal motoneurone activity. (1/190)

1. The hypothesis is advanced that the joint occurrence of unitary excitatory post-synaptic potentials e.p.s.p.s) evoked in motoneurones by branches of common stem pre-synaptic fibres causes short-term synchronization of their discharge during the rising phases of the unitary e.p.s.p.s. 2. This hypothesis was tested using the pre- and post-stimulus time (PPST) histogram to detect synchronized firing among groups of intercostal motoneurones discharging in response to their natural synaptic drives. 3. Motor nerve action potentials were recorded monophasically from nerve filaments of the external intercostal muscles of anaesthetized, paralysed cats maintained on artificial ventilation. 4. Computer methods were used to measure peak spike amplitude, spike amplitude, spike interval and filament identification for simultaneous recordings from four filaments. The spike amplitude histograms were derived for each filament and groups of spikes were selected for analysis. 5. With spikes of one group designated as 'stimuli' (occurring at zero time) and those of a second as 'response' the PPST histogram was computed with different time bin widths. 6. With bin widths of 100 and 10 msec the central respiratory periodicity was apparent in the PPST histogram. With 1.0 msec bins the PPST histogram showed a narrow central peak extending to +/- 3.0 msec at its base. This 'short-term synchronization' supports the hypothesis of joint firing due to common presynaptic connectivity. 7. It was shown that detection of short-term synchronization was critically dependent on a sufficient quantity of data but that provided a simple criterion of adequate counts per bin in the PPST histogram was met, short-term synchronization could be detected between intercostal motoneurones of the same and adjacent segments.  (+info)

Pattern of expiratory muscle activation during lower thoracic spinal cord stimulation. (2/190)

Large positive airway pressures (Paws) can be generated by lower thoracic spinal cord stimulation (SCS), which may be a useful method of restoring cough in spinal cord-injured patients. Optimal electrode placement, however, requires an assessment of the pattern of current spread during SCS. Studies were performed in anesthetized dogs to assess the pattern of expiratory muscle recruitment during SCS applied at different spinal cord levels. A multicontact stimulating electrode was positioned over the surface of the lower thoracic and upper lumbar spinal cord. Recording electromyographic electrodes were placed at several locations in the abdominal and internal intercostal muscles. SCS was applied at each lead, in separate trials, with single shocks of 0.2-ms duration. The intensity of stimulation was adjusted to determine the threshold for development of the compound action potential at each electrode lead. The values of current threshold for activation of each muscle formed parabolas with minimum values at specific spinal root levels. The slopes of the parabolas were relatively steep, indicating that the threshold for muscle activation increases rapidly at more cephalad and caudal sites. These results were compared with the effectiveness of SCS (50 Hz; train duration, 1-2 s) at different spinal cord levels to produce changes in Paw. Stimulation at the T9 and T10 spinal cord level resulted in the largest positive Paws with a single lead. At these sites, threshold values for activation of the internal intercostal (7-11th interspaces) upper portions of external oblique, rectus abdominis, and transversus abdominis were near their minimum. Threshold values for activation of the caudal portions of the abdominal muscles were high (>50 mA). Our results indicate that 1) activation of the more cephalad portions of the abdominal muscles is more important than activation of caudal regions in the generation of positive Paws and 2) it is not possible to achieve complete activation of the expiratory muscles with a single electrode lead by using modest current levels. In support of this latter conclusion, a two-electrode lead system results in more uniform expiratory muscle activation and significantly greater changes in Paw.  (+info)

Respiratory mechanical advantage of the canine external and internal intercostal muscles. (3/190)

1. The current conventional view of intercostal muscle actions is based on the theory of Hamberger (1749) and maintains that as a result of the orientation of the muscle fibres, the external intercostals have an inspiratory action on the lung and the internal interosseous intercostals have an expiratory action. This notion, however, remains unproved. 2. In the present studies, the respiratory actions of the canine external and internal intercostal muscles were evaluated by applying the Maxwell reciprocity theorem. Thus the effects of passive inflation on the changes in length of the muscles throughout the rib cage were assessed, and the distributions of muscle mass were determined. The fractional changes in muscle length during inflation were then multiplied by muscle mass and maximum active stress (3.0 kg cm-2) to evaluate the potential effects of the muscles on the lung. 3. The external intercostals in the dorsal third of the rostral interspaces were found to have a large inspiratory effect. However, this effect decreases rapidly both toward the costochondral junctions and toward the base of the rib cage. As a result, it is reversed to an expiratory effect in the most caudal interspaces. The internal intercostals in the caudal interspaces have a large expiratory effect, but this effect decreases ventrally and rostrally, such that it is reversed to an inspiratory effect in the most rostral interspaces. 4. These observations indicate that the canine external and internal intercostal muscles do not have distinct inspiratory and expiratory actions as conventionally thought. Therefore, their effects on the lung during breathing will be determined by the topographic distribution of neural drive.  (+info)

Spatial distribution of external and internal intercostal activity in dogs. (4/190)

1. The observation that the external and internal interosseous intercostal muscles in the dog show marked regional differences in mechanical advantage has prompted us to re-examine the topographic distribution of electrical activity among these muscles during spontaneous breathing. 2. Inspiratory activity was recorded only from the areas of the external intercostals with an inspiratory mechanical advantage, and expiratory activity was recorded only from the areas of the internal intercostals with an expiratory mechanical advantage. The expiratory discharges previously recorded from the caudal external intercostals and the inspiratory discharges recorded from the rostral internal intercostals were probably due to cross-contamination. 3. Activity in each muscle area was also quantified relative to the activity measured during tetanic, supramaximal nerve stimulation (maximal activity). External intercostal inspiratory activity was consistently greater in the areas with a greater inspiratory advantage (i.e. the dorsal aspect of the rostral segments) than in the areas with a smaller inspiratory advantage, and internal intercostal expiratory activity was invariably greatest in the areas with the greatest expiratory advantage (i.e. the dorsal aspect of the caudal segments). 4. This topographic distribution of neural drive confers to the external intercostal muscles an inspiratory action on the lung during breathing and to the internal interosseous intercostals an expiratory action.  (+info)

The temperature sensitivity of miniature endplate currents is mostly governed by channel gating: evidence from optimized recordings and Monte Carlo simulations. (5/190)

The temperature dependence of miniature endplate current (MEPC) amplitude (A(c)), 20-80% rise time (t(r)), and 90-33% fall-time (t(f)) was determined for lizard (Anolis carolinensis) intercostal muscle using broadband extracellular (EC) and voltage clamp (VC) recordings. Voltage clamp methods were optimized for the fast MEPC rising phase using custom electronics. From 0-43 degrees C, A(c) increased by approximately 4.2-fold, while t(r) and t(f) decreased by approximately 3.6- and approximately 9.5-fold, respectively. Arrhenius plots were smoothly curved, with small apparent Q(10) (A(c)) or (Q(10))(-1) (t(r) and t(f)) values mostly well below 2.0. Nearly identical extracellular and voltage clamp results ruled out measurement artifacts, even for the shortest t(r) values (<60 microseconds). Monte Carlo simulation of MEPCs showed that a single underlying rate cannot determine the observed temperature dependence. To quantitatively reproduce the experimental t(f) results, a minimal model required activation energies of 46.0 (Q(10) approximately 2.0) and 63.6 (Q(10) approximately 2.5) kJ mol(-1) for channel opening and closing, respectively, and accounted for most of the observed changes in A(c) and t(r) as well. Thus, relatively large but offsetting temperature sensitivities of channel gating mostly govern and minimize the temperature dependence of MEPCs, preserving the safety factor for neuromuscular transmission. Additional temperature-sensitive parameters that could fine-tune the minimal model are discussed.  (+info)

Muscle kinematics for minimal work of breathing. (6/190)

A mathematical model was analyzed to obtain a quantitative and testable representation of the long-standing hypothesis that the respiratory muscles drive the chest wall along the trajectory for which the work of breathing is minimal. The respiratory system was modeled as a linear elastic system that can be expanded either by pressure applied at the airway opening (passive inflation) or by active forces in respiratory muscles (active inflation). The work of active expansion was calculated, and the distribution of muscle forces that produces a given lung expansion with minimal work was computed. The calculated expression for muscle force is complicated, but the corresponding kinematics of muscle shortening is simple: active inspiratory muscles shorten more during active inflation than during passive inflation, and the ratio of active to passive shortening is the same for all active muscles. In addition, the ratio of the minimal work done by respiratory muscles during active inflation to work required for passive inflation is the same as the ratio of active to passive muscle shortening. The minimal-work hypothesis was tested by measurement of the passive and active shortening of the internal intercostal muscles in the parasternal region of two interspaces in five supine anesthetized dogs. Fractional changes in muscle length were measured by sonomicrometry during passive inflation, during quiet breathing, and during forceful inspiratory efforts against a closed airway. Active muscle shortening during quiet breathing was, on average, 70% greater than passive shortening, but it was only weakly correlated with passive shortening. Active shortening inferred from the data for more forceful inspiratory efforts was approximately 40% greater than passive shortening and was highly correlated with passive shortening. These data support the hypothesis that, during forceful inspiratory efforts, muscle activation is coordinated so as to expand the chest wall with minimal work.  (+info)

Characterization of the early development of specific hypaxial muscles from the ventrolateral myotome. (7/190)

We have previously found that the myotome is formed by a first wave of pioneer cells generated along the medial epithelial somite and a second wave emanating from the dorsomedial lip (DML), rostral and caudal edges of the dermomyotome (Kahane, N., Cinnamon, Y. and Kalcheim, C. (1998a) Mech. Dev. 74, 59-73; Kahane, N., Cinnamon, Y. and Kalcheim, C. (1998b) Development 125, 4259-4271). In this study, we have addressed the development and precise fate of the ventrolateral lip (VLL) in non-limb regions of the axis. To this end, fluorescent vital dyes were iontophoretically injected in the center of the VLL and the translocation of labeled cells was followed by confocal microscopy. VLL-derived cells colonized the ventrolateral portion of the myotome. This occurred following an early longitudinal cell translocation along the medial boundary until reaching the rostral or caudal dermomyotome lips from which fibers emerged into the myotome. Thus, the behavior of VLL cells parallels that of their DML counterparts which colonize the opposite, dorsomedial portion of the myotome. To precisely understand the way the myotome expands, we addressed the early generation of hypaxial intercostal muscles. We found that intercostal muscles were formed by VLL-derived fibers that intermingled with fibers emerging from the ventrolateral aspect of both rostral and caudal edges of the dermomyotome. Notably, hypaxial intercostal muscles also contained pioneer myofibers (first wave) showing for the first time that lateral myotome-derived muscles contain a fundamental component of fibers generated in the medial domain of the somite. In addition, we show that during myotome growth and evolution into muscle, second-wave myofibers progressively intercalate between the pioneer fibers, suggesting a constant mode of myotomal expansion in its dorsomedial to ventrolateral extent. This further suggests that specific hypaxial muscles develop following a consistent ventral expansion of a 'compound myotome' into the somatopleure.  (+info)

Postinspiratory activity of the parasternal and external intercostal muscles in awake canines. (8/190)

Previous studies have shown in awake dogs that activity in the crural diaphragm, but not in the costal diaphragm, usually persists after the end of inspiratory airflow. It has been suggested that this difference in postinspiratory activity results from greater muscle spindle content in the crural diaphragm. To evaluate the relationship between muscle spindles and postinspiratory activity, we have studied the pattern of activation of the parasternal and external intercostal muscles in the second to fourth interspaces in eight chronically implanted animals. Recordings were made on 2 or 3 successive days with the animals breathing quietly in the lateral decubitus position. The two muscles discharged in phase with inspiration, but parasternal intercostal activity usually terminated with the cessation of inspiratory flow, whereas external intercostal activity persisted for 24.7 +/- 12.3% of inspiratory time (P < 0.05). Forelimb elevation in six animals did not affect postinspiratory activity in the parasternal but prolonged postinspiratory activity in the external intercostal to 45.4 +/- 16.3% of inspiratory time (P < 0.05); in two animals, activity was still present at the onset of the next inspiratory burst. These observations support the concept that muscle spindles are an important determinant of postinspiratory activity. The absence of such activity in the parasternal intercostals and costal diaphragm also suggests that the mechanical impact of postinspiratory activity on the respiratory system is smaller than conventionally thought.  (+info)