Is salivary histatin 5 a metallopeptide? (1/16)

Histatins are small histidine-rich salivary polypeptides which exhibit antimicrobial activity against Candida albicans. This antimicrobial activity has been ascribed in part to a high content of basic amino acids. However, unlike most other antimicrobial proteins histatins have a high content of histidine, tyrosine and acidic amino acids known to participate in metal ion coordination. This study was conducted to test whether histatin 5 could bind zinc and copper which are metals present in salivary secretions and whole saliva. Physical binding parameters and spectral properties of zinc- and copper-histatin complexes were investigated in order to obtain direct evidence of these interactions. A spectrophotometric competition assay using the metallochromic indicator murexide showed that histatin 5 dissociates metal indicator complexes containing zinc or copper ions. Absorption spectra of histatin 5 at increasing copper chloride concentrations resulted in higher absorbance in the 230-280 nm wavelength range and this spectral change was saturated at a peptide:metal molar ratio of approx. 1:1. A corresponding band was observed in the visible range of the spectrum with a maximum and molar extinction coefficient corresponding to that of copper binding to an ATCUN motif. Quantitative assessment of zinc and copper binding to histatin 5 using isothermal titration calorimetry revealed at least one high affinity site for each metal, with binding constants of 1.2x10(5) and 2.6x10(7) M(-1), respectively. These results indicate that histatin 5 exhibits metallopeptide-like properties. The precise biological significance of this has not yet been established but histatins may contribute significantly to salivary metal binding capacity.  (+info)

Action of caffeine on calcium transport by isolated fractions of myofibrils, mitochondria, and sarcoplasmic reticulum from rabbit heart. (2/16)

We studied the effects of caffeine on calcium transport by subcellular organelles isolated from rabbit myocardium. Caffeine increased myofibrillar basic and calcium-activated ATPase activity at 20 mM but not at lower concentrations. Mitochondrial and sarcoplasmic reticulum (SR) calcium accumulation was measured both by dual wavelength spectrophotometry with the calcium-sensitive dye, murexide, and by Millipore filtration with 45Ca. In mitochondria, caffeine impaired phosphate-assisted calcium transport but did not alter the closely related parameters of oxygen uptake, P/O ratio (nmol adenosine diphosphate consumed/n ats oxygen consumed, state 3 respiration) or limited calcium loading. In SR, caffeine impaired calcium accumulation. New methods were used to characterize calcium accumulation in the absence of oxalate according to first order reaction kinetics. Caffeine increased the rate constant while decreasing the calcium accumulated. It also increased the associated calcium-activated ATPase activity at low (30 mM) but not high (240 micrometer) external calcium concentration. In the presence of oxalate, caffeine decreased the rate of calcium accumulation, more with low than high calcium concentration. Net efflux of 45Ca from preloaded SR also was increased by caffeine. The findings indicate that caffeine impairs active calcium accumulation by making SR vesicle membranes more permeable to calcium.  (+info)

Role of calsequestrin evaluated from changes in free and total calcium concentrations in the sarcoplasmic reticulum of frog cut skeletal muscle fibres. (3/16)

Calsequestrin is a large-capacity Ca-binding protein located in the terminal cisternae of sarcoplasmic reticulum (SR) suggesting a role as a buffer of the concentration of free Ca in the SR ([Ca2+](SR)) serving to maintain the driving force for SR Ca2+ release. Essentially all of the functional studies on calsequestrin to date have been carried out on purified calsequestrin or on disrupted muscle preparations such as terminal cisternae vesicles. To obtain information about calsequestrin's properties during physiological SR Ca2+ release, experiments were carried out on frog cut skeletal muscle fibres using two optical methods. One - the EGTA-phenol red method - monitored the content of total Ca in the SR ([Ca(T)](SR)) and the other used the low affinity Ca indicator tetramethylmurexide (TMX) to monitor the concentration of free Ca in the SR. Both methods relied on a large concentration of the Ca buffer EGTA (20 mM), in the latter case to greatly reduce the increase in myoplasmic [Ca2+] caused by SR Ca2+ release thereby almost eliminating the myoplasmic component of the TMX signal. By releasing almost all of the SR Ca, these optical signals provided information about [Ca(T)](SR) versus [Ca2+](SR) as [Ca2+](SR) varied from its resting level ([Ca2+](SR,R)) to near zero. Since almost all of the Ca in the SR is bound to calsequestrin, this information closely resembles the binding curve of the Ca-calsequestrin reaction. Calcium binding to calsequestrin was found to be cooperative (estimated Hill coefficient = 2.95) and to have a very high capacity (at the start of Ca2+ release, 23 times more Ca was estimated to initiate from calsequestrin as opposed to the pool of free Ca in the SR). The latter result contrasts with an earlier report that only approximately 25% of released Ca2+ comes from calsequestrin and approximately 75% comes from the free pool. The value of [Ca2+](SR,R) was close to the K(D) for calsequestrin, which has a value near 1 mm in in vitro studies. Other evidence indicates that [Ca2+](SR,R) is near 1 mM in cut fibres. These results along with the known rapid kinetics of the Ca-calsequestrin binding reaction indicate that calsequestrin's properties are optimized to buffer [Ca2+](SR) during rapid, physiological SR Ca2+ release. Although the results do not entirely rule out a more active role in the excitation-contraction coupling process, they do indicate that passive buffering of [Ca2+](SR) is a very important function of calsequestrin.  (+info)

Myoplasmic calcium transients monitored with purpurate indicator dyes injected into intact frog skeletal muscle fibers. (4/16)

Intact single twitch fibers from frog muscle were studied on an optical bench apparatus after microinjection with tetramethylmurexide (TMX) or purpurate-3,3' diacetic acid (PDAA), two compounds from the purpurate family of absorbance Ca2+ indicators previously used in cut muscle fibers (Maylie, J., M. Irving, N. L. Sizto, G. Boyarsky, and W. K. Chandler. 1987. J. Gen. Physiol. 89:145-176; Hirota, A., W. K. Chandler, P. L. Southwick, and A. S. Waggoner. 1989. J. Gen. Physiol. 94:597-631.) The apparent longitudinal diffusion constant of PDAA (mol wt 380) in myoplasm was 0.99 (+/- 0.04, SEM) x 10(-6) cm2 s-1 (16-17 degrees C), a value which suggests that 24-43% of the PDAA molecules were bound to myoplasmic constituents of large molecular weight. The corresponding values for TMX (mol wt 322) were 0.98 (+/- 0.05) x 10(-6) cm2 s-1 and 44-50%, respectively. Muscle membranes (surface and/or transverse-tubular) appear to be permeable to TMX and, to a lesser extent, to PDAA, since the total amount of indicator contained within a fiber decreased with time after injection. The average time constants for disappearance of indicator were 46 (+/- 7, SEM) min for TMX and 338 (+/- 82) min for PDAA. The fraction of indicator in the Ca2(+)-bound state in resting fibers was significantly different from zero for TMX (0.070 +/- 0.008) but not for PDAA (0.026 +/- 0.009). In in vitro calibrations PDAA but not TMX appeared to react with Ca2+ with 1:1 stoichiometry. In agreement with Hirota et al. (Hirota, A., W. K. Chandler, P. L. Southwick, and A. S. Waggoner. 1989. J. Gen. Physiol. 94:597-631), we conclude that PDAA is probably a more reliable myoplasmic Ca2+ indicator than TMX. In fibers that contained PDAA and were stimulated by a single action potential, the calibrated peak value of the myoplasmic free [Ca2+] transient (delta[Ca2+]) averaged 9.4 (+/- 0.6) microM, a value about fivefold larger than that calibrated with antipyrylazo III under otherwise identical conditions (Baylor, S. M., and S. Hollingworth. 1988. J. Physiol. 403:151-192). The fivefold difference is similar to that previously reported in cut fibers with antipyrylazo III and PDAA. Since in both intact and cut fibers the percentage of PDAA bound to myoplasmic constituents is considerably smaller than that found for antipyrylazo III, the PDAA calibration of delta[Ca2+] is likely to be more accurate. Interestingly, in intact fibers the peak value of delta[Ca2+] calibrated with either PDAA or antipyrylazo III is about half that calibrated in cut fibers.(ABSTRACT TRUNCATED AT 400 WORDS)  (+info)

Nickel (II) as a temporary catalyst for hydroxyl radical generation. (5/16)

Many in vivo studies show peroxidative damage during nickel toxicity, suggesting the generation of oxygen-activated species. Using the murexide (5,5'-nitrilodibarbituric acid ammonium salt) bleaching technique, we attempted to spectroscopically determine whether there are any histidylpeptides-Ni (II) complexes able to catalyze a nickel-dependent reduction of hydrogen peroxide leading to free oxygen radical production. We show that peptides containing the glycyl-glycyl-L-histidyl sequence trigger nickel-dependent production of oxygen radicals which can damage proteins, cause a rapid loss of tryptophan and a significant production of bityrosine and also induce peroxidation of polyunsaturated fatty acids. During the reaction, the histidine residue in the peptide is selectively damaged and breakdown of the peptide switches off hydroxyl-radical production.  (+info)

Calcium signals recorded from two new purpurate indicators inside frog cut twitch fibers. (6/16)

Two new Ca indicators, purpurate-3,3'diacetic acid (PDAA) and 1,1'-dimethylpurpurate-3,3'diacetic acid (DMPDAA), were synthesized and used to measure Ca transients in frog cut muscle fibers. These indicators are analogues of the purpurate components of murexide and tetramethylmurexide, in which two acetate groups have been incorporated into each molecule to render it membrane impermeant. The apparent dissociation constant for Ca is 0.95 mM for PDAA and 0.78 mM for DMPDAA. One of the indicators was introduced into a cut fiber, which was mounted in a double Vaseline-gap chamber, by diffusion from the end-pool solutions. The time course of indicator concentration, monitored optically in the middle of the fiber in the central-pool region, suggests that 19% of the PDAA or 27% of the DMPDAA became bound or sequestered inside the fiber. In resting fibers, the absorbance spectrum of either indicator was well fitted by the indicator's [Ca] = 0 mM cuvette absorbance spectrum, which is consistent with the idea that PDAA and DMPDAA do not enter the sarcoplasmic reticulum as tetramethylmurexide appears to be able to do (Maylie, J., M. Irving, N.L. Sizto, G. Boyarsky, and W. K. Chandler, 1987. Journal of General Physiology. 89:145-176). After an action potential, the absorbance of either indicator underwent a rapid and transient change that returned to the prestimulus baseline within 100-200 ms. The amplitude of this change had a wavelength dependence that matched the indicator's Ca-difference spectrum. The average amplitude of peak free [Ca] was 21 microM (PDAA or DMPDAA) if all the indicator inside a fiber was able to react with Ca as in cuvette calibrations, and was 26 (PDAA) or 28 microM (DMPDAA) if only freely diffusible indicator could so react. These results suggest that PDAA and DMPDAA are the first Ca indicators that provide a reliable estimate of both the amplitude and time course of (the spatial average of) free [Ca] in a twitch muscle fiber after an action potential.  (+info)

Calcium signals recorded from cut frog twitch fibers containing tetramethylmurexide. (7/16)

The Ca indicator tetramethylmurexide was introduced into cut fibers, mounted in a double-Vaseline-gap chamber, by diffusion from the end-pool solutions. The indicator diffused rapidly to the central region of a fiber where optical recording was done and, if removed, diffused away equally fast. The time course of concentration suggests that, on average, a fraction 0.27 of indicator was reversibly bound to myoplasmic constituents and the free diffusion constant was 1.75 x 10(-6) cm2/s at 18 degrees C. The shape of the resting absorbance spectrum suggests that a fraction 0.11-0.15 of tetramethylmurexide inside a fiber was complexed with Ca. After action potential stimulation, there was a rapid transient change in indicator absorbance followed by a maintained change of opposite sign. The wavelength dependence of both changes matched a cuvette Ca-difference spectrum. The amplitude of the early peak varied linearly with indicator concentration and corresponded to an average rise in free [Ca] of 17 microM. These rather diverse findings can be explained if the sarcoplasmic reticulum membranes are permeable to Ca-free indicator. Both Ca-free and Ca-complexed indicator inside the sarcoplasmic reticulum would appear to be bound by diffusion analysis and the Ca-complexed form would be detected by the resting absorbance spectrum. The transient change in indicator absorbance would be produced by myoplasmic Ca reacting with indicator molecules that freely diffuse in myoplasmic solution. The maintained signal, which reports Ca dissociating from indicator complexed at rest, would come from changes within the sarcoplasmic reticulum. A method, based on these ideas, is described for separating the two components of the tetramethylmurexide signal. The estimated myoplasmic free [Ca] transient has an average peak value of 26 microM at 18 degrees C. Its time course is similar to, but possibly faster than, that recorded with antipyrylazo III (Maylie, J., M. Irving, N. L. Sizto, and W. K. Chandler. 1987. Journal of General Physiology. 89:83-143).  (+info)

Extracellular calcium transients at single excitations in rabbit atrium measured with tetramethylmurexide. (8/16)

Extracellular calcium transients were resolved within the time course of single contraction cycles in rabbit left atrium using tetramethylmurexide (2 mM) as the calcium-sensitive dye (150-250 microM total calcium, 80-150 microM free calcium). Net extracellular calcium depletion began within 2-4 ms upon excitation; over the following 5-20 ms, depletion continued steeply and amounted to 0.2 mumol/kg wet weight X 10 ms (135 microM free extracellular calcium). In regularly excited muscles (0.5-2 Hz), net depletion slowed rapidly and stopped early during the rise of contractile motion monitored by transmitted light. Maximum depletions amounted to 0.2-0.5% of total extracellular calcium (0.2-0.5 mumol/kg wet weight with 135 microM free calcium). Replenishment of extracellular calcium began at the latest midway to the peak of the motion signal. Calcium replenishment could be complete for the most part by an early phase of relaxation or could take place continuously through relaxation. The maximal net depletion per beat decreased manyfold with a decrease of frequency from 1 to 0.05 Hz. During paired pulse stimulation (200-300-ms twin pulse separation at basal rates of 0.3-1 Hz), extracellular calcium accumulation was enhanced at the initial potentiated contraction; extracellular calcium depletion was prolonged at the low-level premature contraction. With quadruple stimulation (three premature excitations), the apparent rate of net extracellular calcium accumulation at potentiated contractions approached or exceeded the apparent rate of early net calcium depletion. Under the special circumstance of a strongly potentiated post-stimulatory contraction after greater than 5 s rest, repolarization beyond -40 mV occurred within 10 ms, net extracellular calcium accumulation began with the onset of muscle motion, and net extracellular calcium accumulation (1-3 microM/kg wet weight) coincided with a more positive late action potential in comparison with subsequent action potentials. Consistent changes of the apparent rate of early net calcium depletion were not found with any of the simulation patterns examined. In ryanodine-pretreated atria, the duration of depletion was clearly limited by action potential duration at post-rest stimulations; in the presence of 4-aminopyridine (2 mM), depletion continued essentially undiminished for up to 200 ms. The resulting net depletion magnitudes were greater than 10 times larger than the transient depletions found during steady stimulation.  (+info)