Fluorometric measurement of urinary alpha-L-iduronidase activity. (1/155)

A fluorogenic substrate for alpha-L-iduronidase, 4-methylumbelliferyl alpha-L-iduronide, has been newly synthesized and the enzyme activity has been measured in urine samples obtained from normal persons and patients suffering from mucopolysaccharidosis. Urine samples derived from a patient with Scheie syndrome showed greatly reduced activity compared with a normal adult at a similar age. This patient exhibited a high level of urinary excretion of dermatan sulfate and heparan sulfate, which could be interpreted in terms of her low alpha-L-iduronidase activity. The use of the fluorogenic substrate has some advantages over existing methods because of the high sensitivity and the relative ease of handling, and it should be useful not only for diagnosis but also for following the purification process of the enzyme.  (+info)

Mutations in HYAL1, a member of a tandemly distributed multigene family encoding disparate hyaluronidase activities, cause a newly described lysosomal disorder, mucopolysaccharidosis IX. (2/155)

Hyaluronan (HA), a large glycosaminoglycan abundant in the extracellular matrix, is important in cell migration during embryonic development, cellular proliferation, and differentiation and has a structural role in connective tissues. The turnover of HA requires endoglycosidic breakdown by lysosomal hyaluronidase, and a congenital deficiency of hyaluronidase has been thought to be incompatible with life. However, a patient with a deficiency of serum hyaluronidase, now designated as mucopolysaccharidosis IX, was recently described. This patient had a surprisingly mild clinical phenotype, including notable periarticular soft tissue masses, mild short stature, an absence of neurological or visceral involvement, and histological and ultrastructural evidence of a lysosomal storage disease. To determine the molecular basis of mucopolysaccharidosis IX, we analyzed two candidate genes tandemly distributed on human chromosome 3p21.3 and encoding proteins with homology to a sperm protein with hyaluronidase activity. These genes, HYAL1 and HYAL2, encode two distinct lysosomal hyaluronidases with different substrate specificities. We identified two mutations in the HYAL1 alleles of the patient, a 1412G --> A mutation that introduces a nonconservative amino acid substitution (Glu268Lys) in a putative active site residue and a complex intragenic rearrangement, 1361del37ins14, that results in a premature termination codon. We further show that these two hyaluronidase genes, as well as a third recently discovered adjacent hyaluronidase gene, HYAL3, have markedly different tissue expression patterns, consistent with differing roles in HA metabolism. These data provide an explanation for the unexpectedly mild phenotype in mucopolysaccharidosis IX and predict the existence of other hyaluronidase deficiency disorders.  (+info)

Analysis of glycosaminoglycans in urine by using acridine orange fluorescence. (3/155)

The fluorescence technique described here utilizes the electrostatic interaction between the polyanionic sites of glycosaminoglycans and the cationic dye Acridine Orange to analyse urinary glycosaminoglycans from patients suffering from mucopolysaccharidoses. The basis of the titration is the decrease in the fluorescence of free Acridine Orange that occurs when it is bound to polyanions. The effect of the presence of possible interfering materials such as salt, proteins and trace materials in urine was evaluated. This fluorescence technique is technically simple.  (+info)

Report of a mucopolysaccharidosis occurring in Australian aborigines. (4/155)

The first 2 reported cases of a mucopolysaccharidosis occurring in an Australian aboriginal family are presented. Though these children had the characteristic morphological features of the Hurler syndrome, enzyme assay of cultured fibroblasts showed normal levels of alpha-L-iduronidase and decreased activity of arylsulphatase B. Thus, they represented the Hurler syndrome clinically, while they had the enzyme defect of the Maroteaux-Lamy syndrome, and they may represent a new severe form of the Maroteaux-Lamy syndrome. The parents of these children were first cousins. Though the children were not full blood aborigines, examination of the pedigree indicates that the gene originated in the common aboriginal family.  (+info)

Chondroitin 4- and 6-sulfaturia: a new type of inborn error of metabolism? (5/155)

A 14-year-old boy was found to excrete excessive amounts of acidic glycosaminoglycans which were predominantly chondroitin 4-sulfate and chondroitin 6-sulfate. Clinical features included dwarfism, mental retardation, coarse facies, deformities of the spine, hip joints and thorax, and granulations in leucocytes. The clinical and biochemical features found in this boy were compared with the known types of mucopolysaccharidosis and it has been concluded that this case is a new type of mucopolysacchariduria.  (+info)

Metabolic cardiomyopathies. (6/155)

The energy needed by cardiac muscle to maintain proper function is supplied by adenosine Ariphosphate primarily (ATP) production through breakdown of fatty acids. Metabolic cardiomyopathies can be caused by disturbances in metabolism, for example diabetes mellitus, hypertrophy and heart failure or alcoholic cardiomyopathy. Deficiency in enzymes of the mitochondrial beta-oxidation show a varying degree of cardiac manifestation. Aberrations of mitochondrial DNA lead to a wide variety of cardiac disorders, without any obvious correlation between genotype and phenotype. A completely different pathogenetic model comprises cardiac manifestation of systemic metabolic diseases caused by deficiencies of various enzymes in a variety of metabolic pathways. Examples of these disorders are glycogen storage diseases (e.g. glycogenosis type II and III), lysosomal storage diseases (e.g. Niemann-Pick disease, Gaucher disease, I-cell disease, various types of mucopolysaccharidoses, GM1 gangliosidosis, galactosialidosis, carbohydrate-deficient glycoprotein syndromes and Sandhoff's disease). There are some systemic diseases which can also affect the heart, for example triosephosphate isomerase deficiency, hereditary haemochromatosis, CD 36 defect or propionic acidaemia.  (+info)

Clinical and laboratorial study of 19 cases of mucopolysaccharidoses. (7/155)

The mucopolysaccharidoses (MPS) are a heterogeneous group of inborn errors of lysosomal glycosaminoglycan (GAG) metabolism. The importance of this group of disorders among the inborn errors of metabolism led us to report 19 cases. METHOD: We performed clinical, radiological, and biochemical evaluations of the suspected patients, which allowed us to establish a definite diagnosis in 19 cases. RESULTS: Not all patients showed increased GAG levels in urine; enzyme assays should be performed in all cases with strong clinical suspicion. The diagnosis was made on average at the age of 48 months, and the 19 MPS cases, after a full clinical, radiological, and biochemical study, were classified as follows: Hurler - MPS I (1 case); Hunter - MPS II (2 cases); Sanfilippo - MPS III (2 cases); Morquio - MPS IV (4 cases); Maroteaux-Lamy - MPS VI (9 cases); and Sly - MPS VII (1 case). DISCUSSION: The high relative frequency of Maroteaux-Lamy disease contrasts with most reports in the literature and could express a population variability.  (+info)

Glycopeptide storage in skin fibroblasts cultured from a patient with alpha-mannosidase deficiency. (8/155)

Patients with mannosidosis, an inherited deficiency of lysosomal alpha-mannosidase, accumulate large amounts of mannose-rich oligosaccharides (the "core" of the carbohydrate units of many glocoproteins) in brain and liver and excrete these partial degradation products in their urine. A profound alpha-mannosidase deficiency was demonstrated in fibroblasts cultured from a skin biopsy obtained from a child with mannosidosis. Further, abnormal glycopeptides rich in mannose and similar to oligosaccharides found in the patient's urine were isolated from fibroblast extracts by a variety of chromatographic procedures and by virtue of their binding to a concanavalin A-Sepharose 4B affinity column. This storage material contained mannose, N-acetylglucosamine, and asparagine in the ratio 3 : 1 : 1 together with a few toher amino acids and had a molecular weight of approximately 1,100. There was no evidence for excretion of storage material by mannosidosis fibroblasts or for any abnormality in cell surface glycoprotein composition. The glycopeptide nature of the storage material isolated from cultured skin fibroblasts may be attributed to the low level of N-aspartyl-beta-glucosamindase (EC 3.5.1.-) activity in these cells.  (+info)