Endothelin up-regulation and localization following renal ischemia and reperfusion. (1/4643)

BACKGROUND: Endothelin (ET), a potent vasoconstrictor, is known to play a role in ischemic acute renal failure. Although preproET-1 (ppET-1) mRNA is known to be up-regulated following ischemia/reperfusion injury, it has not been determined which component of the injury (ischemia or reperfusion) leads to initial gene up-regulation. Likewise, although ET-1 peptide expression has been localized in the normal kidney, its expression pattern in the ischemic kidney has not been determined. Therefore, the purpose of this study was twofold: (a) to determine whether ischemia alone or ischemia plus reperfusion is required for the up-regulation of ppET-1 mRNA to occur, and (b) to localize ET-1 peptide expression following ischemia in the rat kidney to clarify better the role of ET in the pathophysiology of ischemia-induced acute renal failure. METHODS: Male Lewis rats underwent clamping of the right renal vascular pedicle for either 30 minutes of ischemia (group 1), 60 minutes of ischemia (group 2), 30 minutes of ischemia followed by 30 minutes of reperfusion (group 3), or 60 minutes of ischemia followed by three hours of reperfusion (group 4). The contralateral kidney acted as a control. ppET-1 mRNA up-regulation and ET-1 peptide expression were examined using the reverse transcription-polymerase chain reaction and immunohistochemistry, respectively. RESULTS: Reverse transcription-polymerase chain reaction yielded a control (nonischemic) value of 0.6 +/- 0.2 densitometric units (DU) of ppET-1 mRNA in the kidney. Group 1 levels (30 min of ischemia alone) were 1.8 +/- 0.4 DU, a threefold increase (P < 0.05). Group 2 levels (60 min of ischemia alone) increased almost six times above baseline, 3.5 +/- 0.2 DU (P < 0.01), whereas both group 3 and group 4 (ischemia plus reperfusion) did not experience any further significant increases in mRNA levels (1.9 +/- 0.4 DU and 2.8 +/- 0.6 DU, respectively) beyond levels in group 1 or 2 animals subjected to similar ischemic periods. ET-1 peptide expression in the ischemic kidneys was significantly increased over controls and was clearly localized to the endothelium of the peritubular capillary network of the kidney. CONCLUSIONS: Initial ET-1 gene up-regulation in the kidney occurs secondary to ischemia, but reperfusion most likely contributes to sustaining this up-regulation. The marked increase of ET-1 in the peritubular capillary network suggests that ET-induced vasoconstriction may have a pathophysiological role in ischemic acute tubular necrosis.  (+info)

Hypothermic neuroprotection of peripheral nerve of rats from ischaemia-reperfusion injury. (2/4643)

Although there is much information on experimental ischaemic neuropathy, there are only scant data on neuroprotection. We evaluated the effectiveness of hypothermia in protecting peripheral nerve from ischaemia-reperfusion injury using the model of experimental nerve ischaemia. Forty-eight male Sprague-Dawley rats were divided into six groups. We used a ligation-reperfusion model of nerve ischaemia where each of the supplying arteries to the sciatic-tibial nerves of the right hind limb was ligated and the ligatures were released after a predetermined period of ischaemia. The right hind limbs of one group (24 rats) were made ischaemic for 5 h and those of the other group (24 rats) for 3 h. Each group was further divided into three and the limbs were maintained at 37 degrees C (36 degrees C for 5 h of ischaemia) in one, 32 degrees C in the second and 28 degrees C in the third of these groups for the final 2 h of the ischaemic period and an additional 2 h of the reperfusion period. A behavioural score was recorded and nerve electrophysiology of motor and sensory nerves was undertaken 1 week after surgical procedures. At that time, entire sciatic-tibial nerves were harvested and fixed in situ. Four portions of each nerve were examined: proximal sciatic nerve, distal sciatic nerve, mid-tibial nerve and distal tibial nerve. To determine the degree of fibre degeneration, each section was studied by light microscopy, and we estimated an oedema index and a fibre degeneration index. The groups treated at 36-37 degrees C underwent marked fibre degeneration, associated with a reduction in action potential and impairment in behavioural score. The groups treated at 28 degrees C (for both 3 and 5 h) showed significantly less (P < 0.01; ANOVA, Bonferoni post hoc test) reperfusion injury for all indices (behavioural score, electrophysiology and neuropathology), and the groups treated at 32 degrees C had scores intermediate between the groups treated at 36-37 degrees C and 28 degrees C. Our results showed that cooling the limbs dramatically protects the peripheral nerve from ischaemia-reperfusion injury.  (+info)

Does soluble intercellular adhesion molecule-1 (ICAM-1) affect neutrophil activation and adhesion following ischaemia-reperfusion? (3/4643)

OBJECTIVES: To examine the effect of reperfusion plasma and sICAM-1 on neutrophil integrin expression and neutrophil adhesion to determine if sICAM-1 has a potential role in the regulation of neutrophil adhesion. MATERIALS: Twenty-seven patients, 17 men and 10 women undergoing femorodistal surgery. Blood was taken preoperatively and from the femoral vein following the release of the cross-clamp. Neutrophils were obtained from five volunteers and incubated with phosphate buffered saline (PBS), preoperative plasma or reperfusion plasma with and without sICAM-1. Neutrophil expression of CD11b and adhesion were measured. MAIN RESULTS: Neutrophil CD11b expression did not change following incubation in the three media. Neutrophil adhesion increased significantly following exposure to reperfusion plasma compared to PBS or preoperative plasma (45.5 adhesion vs. 12.75%, p < 0.01 Mann-Whitney U-test). Soluble ICAM-1 decreased CD11b expression and adhesion in neutrophils exposed to reperfusion plasma only (CD11b expression fell from 15.9 to 3.4 mcf, p < 0.01 Mann-Whitney U-test and adhesion fell to 11.6% cells adhered, p < 0.01). CONCLUSION: An increase in CD11b expression is not required for an increase in neutrophil adhesion. The change in neutrophil adhesion produced by reperfusion plasma can be blocked by sICAM-1. Soluble ICAM-1 may have a physiological role in the regulation of neutrophil adhesion.  (+info)

Modification of postsynaptic densities after transient cerebral ischemia: a quantitative and three-dimensional ultrastructural study. (4/4643)

Abnormal synaptic transmission has been hypothesized to be a cause of neuronal death resulting from transient ischemia, although the mechanisms are not fully understood. Here, we present evidence that synapses are markedly modified in the hippocampus after transient cerebral ischemia. Using both conventional and high-voltage electron microscopy, we performed two- and three-dimensional analyses of synapses selectively stained with ethanolic phosphotungstic acid in the hippocampus of rats subjected to 15 min of ischemia followed by various periods of reperfusion. Postsynaptic densities (PSDs) from both area CA1 and the dentate gyrus were thicker and fluffier in postischemic hippocampus than in controls. Three-dimensional reconstructions of selectively stained PSDs created using electron tomography indicated that postsynaptic densities became more irregular and loosely configured in postischemic brains compared with those in controls. A quantitative study based on thin sections of the time course of PSD modification indicated that the increase in thickness was both greater and more long-lived in area CA1 than in dentate gyrus. Whereas the magnitude of morphological change in dentate gyrus peaked at 4 hr of reperfusion (140% of control values) and declined thereafter, changes in area CA1 persisted and increased at 24 hr of reperfusion (191% of control values). We hypothesize that the degenerative ultrastructural alteration of PSDs may produce a toxic signal such as a greater calcium influx, which is integrated from the thousands of excitatory synapses onto dendrites, and is propagated to the neuronal somata where it causes or contributes to neuronal damage during the postischemic phase.  (+info)

Intestinal reperfusion injury is mediated by IgM and complement. (5/4643)

Intestinal ischemia-reperfusion injury is dependent on complement. This study examines the role of the alternative and classic pathways of complement and IgM in a murine model of intestinal ischemia-reperfusion. Wild-type animals, mice deficient in complement factor 4 (C4), C3, or Ig, or wild-type mice treated with soluble complement receptor 1 were subjected to 40 min of jejunal ischemia and 3 h of reperfusion. Compared with wild types, knockout and treated mice had significantly reduced intestinal injury, indicated by lowered permeability to radiolabeled albumin. When animals deficient in Ig were reconstituted with IgM, the degree of injury was restored to wild-type levels. Immunohistological staining of intestine for C3 and IgM showed colocalization in the mucosa of wild-type controls and minimal staining for both in the intestine of Ig-deficient and C4-deficient mice. We conclude that intestinal ischemia-reperfusion injury is dependent on the classic complement pathway and IgM.  (+info)

Riluzole improves functional recovery after ischemia in the rat retina. (6/4643)

PURPOSE: Retinal ischemia leads to neuronal death. The effects of riluzole, a drug that protects against the deleterious effect of cerebral ischemia by acting on several types of ion channels and blocking glutamatergic neurotransmission, were investigated in a rat model of retinal ischemic injury. METHODS: Retinal ischemia was induced by increasing intraocular pressure above systolic blood pressure for 30 minutes. Electroretinograms were recorded before ischemia and at different periods of reperfusion. Riluzole was injected or topically applied to the eye before or after ischemia and twice daily during the reperfusion period. Retinas were harvested for histopathology (toluidine blue and silver-impregnation stainings, Tdt-dUTP terminal nick-end labeling [TUNEL] method) and immunohistochemistry for cytoskeletal glial fibrillary acid protein and c-jun NH2-terminal kinase (p-JNK). RESULTS: Ischemia for 30 minutes caused a reduction of a- and b-waves of the electroretinogram. Systemic and topical treatments with riluzole significantly enhanced the recovery of the reduced a- and b-waves after defined reperfusion times. Riluzole also prevented or attenuated ischemia-induced retinal cell death (necrosis and apoptosis) and reduced the activation of p-JNK, c-jun phosphorylation, and the increase of cytoskeletal proteins induced by ischemic injury. CONCLUSIONS: Riluzole acted in vivo as a potent neuroprotective agent against pressure-induced ischemia. Therefore, riluzole may be a major drug for use in protection against retinal injury.  (+info)

The effect of mannitol versus dimethyl thiourea at attenuating ischemia/reperfusion-induced injury to skeletal muscle. (7/4643)

OBJECTIVE: Mannitol is used as a treatment for skeletal muscle ischemia/reperfusion (I/R) injury in humans, despite the fact that its effectiveness in vivo is still disputed. The purpose of this study was to determine the efficacy of mannitol in attenuating I/R injury at the microcirculatory level. METHODS: The study was designed as an experimental study with male Wistar rats. The main outcome measures were intravital microscopy, which was used to measure capillary perfusion, capillary and venular red blood cell velocity (VRBC), and leukocyte-endothelial interactions in the extensor digitorum longus muscle of the rat hind limb before and after ischemia. In addition, tissue injury was assessed during reperfusion with the fluorescent vital dyes bisbenzimide and ethidium bromide. Dimethyl thiourea (DMTU), a highly effective therapeutic agent of experimental I/R injury, was used as a positive control. RESULTS: No-flow ischemia (2 hour) resulted in a 40% drop in capillary perfusion, a decline in capillary and venular VRBC, and increased leukocyte venular adherence and tissue infiltration. Tissue injury increased to a constant level during reperfusion. Mannitol attenuated capillary malperfusion during the first 60 minutes of reperfusion and prevented a decline in capillary VRBC. However, mannitol did not reduce tissue injury or leukocyte adherence and infiltration during reperfusion. By comparison, DMTU not only prevented the perfusion deficits and the increases in leukocyte venular adherence and tissue infiltration but significantly reduced the magnitude of tissue injury. CONCLUSION: Our findings suggest that mannitol may be of limited value for the prevention of early reperfusion-induced injury after no-flow ischemia in skeletal muscle. By comparison, DMTU was highly efficacious by not only reducing microvascular perfusion deficits but by also reducing leukocyte-endothelial cell interactions and the incidence of cellular injury.  (+info)

Bcl-2 inhibits ischemia-reperfusion-induced apoptosis in the intestinal epithelium of transgenic mice. (8/4643)

Little is known about the effects of ischemia-reperfusion on the inductive, commitment, or execution phases of apoptosis. We have created a genetically defined model to study the response of small intestinal epithelial cells to ischemia-reperfusion injury as a function of their proliferative status and differentiation. Occlusion of the superior mesenteric artery for 20 min in adult FVB/N or C57BL/6 mice results in the appearance of TUNEL-positive apoptotic cells in the jejunal epithelium within 4 h, with a maximum response occurring at 24 h. Stimulation of apoptosis is greater in postmitotic, differentiated epithelial cells located in the upper portions of villi compared with undifferentiated, proliferating cells in the crypts of Lieberkuhn (7-fold vs. 2-fold relative to sham-operated controls). Comparisons of p53(+/+) and p53(-/-) mice established that the apoptosis is p53 independent. To further characterize this response, we generated FVB/N transgenic mice that express human Bcl-2 in epithelial cells distributed from the base of crypts to the tips of their associated villi. The fivefold elevation in steady-state Bcl-2 concentration is not accompanied by detectable changes in the levels or cellular distributions of the related anti-apoptotic regulator Bcl-xL or of the proapoptotic regulators Bax and Bak and does not produce detectable effects on basal proliferation, differentiation, or death programs. The apoptotic response to ischemia-reperfusion is reduced twofold in the crypts and villi of transgenic mice compared with their normal littermates. These results suggest that both undifferentiated and differentiated cells undergo a commitment phase that is sensitive to Bcl-2. Forced expression of Bcl-2 also suppressed the p53-dependent death that occurs in proliferating crypt epithelial cells following gamma-irradiation. Thus suppressibility by Bcl-2 operationally defines a common feature of the apoptosis induced in the crypt epithelium by these two stimuli.  (+info)