Disruption of filamentous actin inhibits human macrophage fusion. (9/916)

The foreign body reaction to implanted biomaterials, characterized by the presence of macrophages and foreign body giant cells (FBGC), can result in structural and functional failure of the implant. Recently, we have shown that interleukin-4 and interleukin-13 can independently induce human macrophage fusion to form FBGC via a macrophage mannose receptor (MR) -mediated pathway. The MR is believed to mediate both endocytosis of glycoproteins and phagocytosis of microorganisms, which bear terminal mannose, fucose, N-acetylglucosamine, or glucose residues. Polarization of microfilaments to closely apposed macrophage membranes as observed with fluorescence confocal microscopy led us to ask whether MR-mediated fusion occurred via a filamentous actin-dependent pathway. Cytochalasins B and D and latrunculin-A, agents that disrupt microfilaments, inhibited macrophage fusion in a concentration-dependent manner. The concentrations of cytochalasins D and B that inhibited fusion did not significantly decrease macrophage adhesion, spreading, or motility but did inhibit internalization of Candida albicans during interleukin-13-enhanced, MR-mediated phagocytosis. Very low concentrations of cytochalasin B (< 2 microM) induced a slight enhancement of macrophage fusion. Taken together, the results of this study suggest that cytokine-induced, MR-mediated macrophage fusion requires an intact F-actin cytoskeleton and that the mechanism of fusion is similar to phagocytosis.--DeFife, K. M., Jenney, C. R., Colton, E., Anderson, J. M. Disruption of filamentous actin inhibits human macrophage fusion.  (+info)

Osmotically induced cell volume changes alter anterograde and retrograde transport, Golgi structure, and COPI dissociation. (10/916)

Physiological conditions that impinge on constitutive traffic and affect organelle structure are not known. We report that osmotically induced cell volume changes, which are known to occur under a variety of conditions, rapidly inhibited endoplasmic reticulum (ER)-to-Golgi transport in mammalian cells. Both ER export and ER Golgi intermediate compartment (ERGIC)-to-Golgi trafficking steps were blocked, but retrograde transport was active, and it mediated ERGIC and Golgi collapse into the ER. Extensive tubulation and relatively rapid Golgi resident redistribution were observed under hypo-osmotic conditions, whereas a slower redistribution of the same markers, without apparent tubulation, was observed under hyperosmotic conditions. The osmotic stress response correlated with the perturbation of COPI function, because both hypo- and hyperosmotic conditions slowed brefeldin A-induced dissociation of betaCOP from Golgi membranes. Remarkably, Golgi residents reemerged after several hours of sustained incubation in hypotonic or hypertonic medium. Reemergence was independent of new protein synthesis but required PKC, an activity known to mediate cell volume recovery. Taken together these results indicate the existence of a coupling between cell volume and constitutive traffic that impacts organelle structure through independent effects on anterograde and retrograde flow and that involves, in part, modulation of COPI function.  (+info)

A truncated form of mannose-binding lectin-associated serine protease (MASP)-2 expressed by alternative polyadenylation is a component of the lectin complement pathway. (11/916)

The lectin complement pathway is initiated by binding of mannose-binding lectin (MBL) and MBL-associated serine protease (MASP) to carbohydrates. In the human lectin pathway, MASP-1 and MASP-2 are involved in the proteolysis of C4, C2 and C3. Here we report that the human MBL-MASP complex contains a new 22 kDa protein [small MBL-associated protein (sMAP)] bound to MASP-1. Analysis of the nucleotide sequence of sMAP cDNA revealed that it is a truncated form of MASP-2, consisting of the first two domains (i.e. the first internal repeat and the epidermal growth factor-like domain) with four different C-terminal amino acids. sMAP mRNAs are expressed in liver by alternative polyadenylation of the MASP-2 gene, in which a sMAP-specific exon containing an in-frame stop codon and a polyadenylation signal is used. The involvement of sMAP in the MBL-MASP complex suggests that the activation mechanism of the lectin pathway is more complicated than that of the classical pathway.  (+info)

Glucocorticoids affect human dendritic cell differentiation and maturation. (12/916)

Because dendritic cells (DC) play a major role in the initiation of T cell-mediated immunity, we studied the effects of glucocorticoids, well-known inhibitors of the immune and inflammatory response, on the differentiation and maturation of human DC. DC were differentiated from human monocytes by culture with GM-CSF and IL-4 for 7 days with and without dexamethasone (Dex). Cells treated with Dex (10-8 M) (Dex-DC) developed a characteristic dendritic morphology; however, membrane phenotype analysis demonstrated that they were not fully differentiated. Dex-DC expressed low levels of CD1a and, unlike untreated cells, high levels of CD14 and CD16. Molecules involved in Ag presentation (CD40, CD86, CD54) were also impaired. In contrast, molecules involved in Ag uptake (mannose receptor, CD32) and cell adhesion (CD11/CD18, CD54) were up-regulated. After exposure to TNF-alpha or CD40 ligand, Dex-DC expressed lower levels of CD83 and CD86 than untreated cells. Dex-DC showed a higher endocytic activity, a lower APC function, and a lower capacity to secrete cytokines than untreated cells. Overall, these results indicate that DC differentiated in the presence of Dex are at a more immature stage. Moreover, Dex also partially blocked terminal maturation of already differentiated DC. In conclusion, our data suggest that glucocorticoids may act at the very first step of the immune response by modulating DC differentiation, maturation, and function.  (+info)

A Rab2 mutant with impaired GTPase activity stimulates vesicle formation from pre-Golgi intermediates. (13/916)

Rab2 immunolocalizes to pre-Golgi intermediates (vesicular-tubular clusters [VTCs]) that are the first site of segregation of anterograde- and retrograde-transported proteins and a major peripheral site for COPI recruitment. Our previous work showed that Rab2 Q65L (equivalent to Ras Q61L) inhibited endoplasmic reticulum (ER)-to-Golgi transport in vivo. In this study, the biochemical properties of Rab2 Q65L were analyzed. The mutant protein binds GDP and GTP and has a low GTP hydrolysis rate that suggests that Rab2 Q65L is predominantly in the GTP-bound-activated form. The purified protein arrests vesicular stomatitis virus glycoprotein transport from VTCs in an assay that reconstitutes ER-to-Golgi traffic. A quantitative binding assay was used to measure membrane binding of beta-COP when incubated with the mutant. Unlike Rab2 that stimulates recruitment, Rab2 Q65L showed a dose-dependent decrease in membrane-associated beta-COP when incubated with rapidly sedimenting membranes (ER, pre-Golgi, and Golgi). The mutant protein does not interfere with beta-COP binding but stimulates the release of slowly sedimenting vesicles containing Rab2, beta-COP, and p53/gp58 but lacking anterograde grade-directed cargo. To complement the biochemical results, we observed in a morphological assay that Rab2 Q65L caused vesiculation of VTCs that accumulated at 15 degrees C. These data suggest that the Rab2 protein plays a role in the low-temperature-sensitive step that regulates membrane flow from VTCs to the Golgi complex and back to the ER.  (+info)

Localization and recycling of gp27 (hp24gamma3): complex formation with other p24 family members. (14/916)

We report here the characterization of gp27 (hp24gamma3), a glycoprotein of the p24 family of small and abundant transmembrane proteins of the secretory pathway. Immunoelectron and confocal scanning microscopy show that at steady state, gp27 localizes to the cis side of the Golgi apparatus. In addition, some gp27 was detected in COPI- and COPII-coated structures throughout the cytoplasm. This indicated cycling that was confirmed in three ways. First, 15 degrees C temperature treatment resulted in accumulation of gp27 in pre-Golgi structures colocalizing with anterograde cargo. Second, treatment with brefeldin A caused gp27 to relocate into peripheral structures positive for both KDEL receptor and COPII. Third, microinjection of a dominant negative mutant of Sar1p trapped gp27 in the endoplasmic reticulum (ER) by blocking ER export. Together, this shows that gp27 cycles extensively in the early secretory pathway. Immunoprecipitation and coexpression studies further revealed that a significant fraction of gp27 existed in a hetero-oligomeric complex. Three members of the p24 family, GMP25 (hp24alpha2), p24 (hp24beta1), and p23 (hp24delta1), coprecipitated in what appeared to be stochiometric amounts. This heterocomplex was specific. Immunoprecipitation of p26 (hp24gamma4) failed to coprecipitate GMP25, p24, or p23. Also, very little p26 was found coprecipitating with gp27. A functional requirement for complex formation was suggested at the level of ER export. Transiently expressed gp27 failed to leave the ER unless other p24 family proteins were coexpressed. Comparison of attached oligosaccharides showed that gp27 and GMP25 recycled differentially. Only a very minor portion of GMP25 displayed complex oligosaccharides. In contrast, all of gp27 showed modifications by medial and trans enzymes at steady state. We conclude from these data that a portion of gp27 exists as hetero-oligomeric complexes with GMP25, p24, and p23 and that these complexes are in dynamic equilibrium with individual p24 proteins to allow for differential recycling and distributions.  (+info)

Mannose receptor and its putative ligands in normal murine lymphoid and nonlymphoid organs: In situ expression of mannose receptor by selected macrophages, endothelial cells, perivascular microglia, and mesangial cells, but not dendritic cells. (15/916)

The mannose receptor (MR) has established roles in macrophage (Mphi) phagocytosis of microorganisms and endocytic clearance of host-derived glycoproteins, and has recently been implicated in antigen capture by dendritic cells (DCs) in vitro. MR is the founder member of a family of homologous proteins, and its recognition properties differ according to its tissue of origin. Given this heterogeneity and our recent discovery of a soluble form of MR in mouse serum, we studied the sites of synthesis of MR mRNA and expression of MR protein in normal mouse tissues. We demonstrate that synthesis and expression occur at identical sites, and that mature Mphi and endothelium are heterogeneous with respect to MR expression, additionally describing MR on perivascular microglia and glomerular mesangial cells. However, MR was not detected on DCs in situ, or on marginal zone or subcapsular sinus Mphi, both of which have MR-like binding activities. We also compared expression of MR to the binding of a recombinant probe containing the cysteine-rich domain of MR. We show that MR and its putative ligand(s) are expressed at nonoverlapping sites within lymphoid organs, consistent with a transfer function for soluble MR. Therefore, in addition to endocytic and phagocytic roles, MR may play an important role in antigen recognition and transport within lymphoid organs.  (+info)

Differentiation of the mononuclear phagocyte system during mouse embryogenesis: the role of transcription factor PU.1. (16/916)

During mouse embryogenesis, macrophage-like cells arise first in the yolk sac and are produced subsequently in the liver. The onset of liver hematopoiesis is associated with the transition from primitive to definitive erythrocyte production. This report addresses the hypothesis that a similar transition in phenotype occurs in myelopoiesis. We have used whole mount in situ hybridization to detect macrophage-specific genes expressed during mouse development. The mouse c-fms mRNA, encoding the receptor for macrophage colony-stimulating factor (CSF-1), was expressed on phagocytic cells in the yolk sac and throughout the embryo before the onset of liver hematopoiesis. Similar cells were detected using the mannose receptor, the complement receptor (CR3), or the Microphthalmia transcription factor (MITF) as mRNA markers. By contrast, other markers including the F4/80 antigen, the macrophage scavenger receptor, the S-100 proteins, S100A8 and S100A9, and the secretory product lysozyme appeared later in development and appeared restricted to only a subset of c-fms-positive cells. Two-color immunolabeling on disaggregated cells confirmed that CR3 and c-fms proteins are expressed on the same cells. Among the genes appearing later in development was the macrophage-restricted transcription factor, PU.1, which has been shown to be required for normal adult myelopoiesis. Mice with null mutations in PU.1 had normal numbers of c-fms-positive phagocytes at 11.5dpc. PU.1(-/-) embryonic stem cells were able to give rise to macrophage-like cells after cultivation in vitro. The results support previous evidence that yolk sac-derived fetal phagocytes are functionally distinct from those arising in the liver and develop via a different pathway.  (+info)