Mannose polyethylenimine conjugates for targeted DNA delivery into dendritic cells. (17/916)

Cell surface-bound receptors represent suitable entry sites for gene delivery into cells by receptor-mediated endocytosis. Here we have taken advantage of the mannose receptor that is highly expressed on antigen-presenting dendritic cells for targeted gene transfer by employing mannosylpolyethylenimine (ManPEI) conjugates. Several ManPEI conjugates were synthesized and used for formation of ManPEI/DNA transfection complexes. Conjugates differed in the linker between mannose and polyethylenimine (PEI) and in the size of the PEI moiety. We demonstrate that ManPEI transfection is effective in delivering DNA into mannose receptor-expressing cells. Uptake of ManPEI/DNA complexes is receptor-specific, since DNA delivery can be competed with mannosylated albumin. Additionally, incorporation of adenovirus particles into transfection complexes effectively enhances transgene expression. This is particularly important for primary immunocompetent dendritic cells. It is demonstrated here that dendritic cells transfected with ManPEI/DNA complexes containing adenovirus particles are effective in activating T cells of T cell receptor transgenic mice in an antigen-specific fashion.  (+info)

Vesicular-integral membrane protein, VIP36, recognizes high-mannose type glycans containing alpha1-->2 mannosyl residues in MDCK cells. (18/916)

The 36 kDa vesicular-integral membrane protein, VIP36, has been originally isolated from MDCK cells as a component of glycolipid-enriched detergent-insoluble complexes containing apical marker proteins, and its luminal domain shows homology to leguminous plant lectins and ERGIC-53. As the first step to identify the functional role of VIP36, the carbohydrate binding specificity of VIP36 was investigated using a fusion protein of glutathione- S -transferase and luminal domain of VIP36 (Vip36). It was found that VIP36 recognizes high-mannose type glycans containing alpha1-->2 Man residues and alpha-amino substituted asparagine. The binding of Vip36 to high-mannose type glycans was independent of Ca(2+)and theoptimal condition was pH 6.0 at 37 degrees C. The concentration at which half inhibition of the binding by Man(7-9).GlcNAc(2). N Ac. Asn occurred was 1.0 x 10(-9)M. The association constant between Man(7-9).GlcNAc(2)in porcine thyroglobulin and immobilized Vip36 was 2.1 x 10(8)M(-1)as determined by means of a biosensor based on surface plasmon resonance. These results indicate that VIP36 functions as an intracellular lectin recognizing glycoproteins which possess high-mannose type glycans, (Manalpha1-->2)(2-4).Man(5). GlcNAc(2).  (+info)

Involvement of caveolae in the uptake of respiratory syncytial virus antigen by dendritic cells. (19/916)

The uptake of respiratory syncytial virus (RSV) antigen by cattle dendritic cells was investigated. Pathways of antigen uptake were monitored by flow cytometry using specific tracers and by proliferation assays, which were used to measure the presentation of RSV antigen and ovalbumin. Inhibitors that differentially affected pathways were used to distinguish them. Presentation of RSV antigen, but not ovalbumin, was inhibited by phorbol myristate acetate and filipin, which have been reported to inhibit caveolae, but not by cytochalasin D, amiloride, or mannose. These inhibitors have been reported to block macropinocytosis and other actin-dependent uptake mechanisms, endocytic pathways involving clathrin-coated pits, and the mannose receptor. Furthermore, co-localization of RSV antigen and caveolae was observed by confocal microscopy. Thus, the major route for uptake of RSV antigen by cattle dendritic cells is one mediated by caveolae, adding a pathway of antigen uptake by dendritic cells to those established.  (+info)

Roles for alpha(2)p24 and COPI in endoplasmic reticulum cargo exit site formation. (20/916)

A two-step reconstitution system for the generation of ER cargo exit sites from starting ER-derived low density microsomes (LDMs; 1.17 g/cc) is described. The first step is mediated by the hydrolysis of Mg(2+)ATP and Mg(2+)GTP, leading to the formation of a transitional ER (tER) with the soluble cargo albumin, transferrin, and the ER-to-Golgi recycling membrane proteins alpha(2)p24 and p58 (ERGIC-53, ER-Golgi intermediate compartment protein) enriched therein. Upon further incubation (step two) with cytosol and mixed nucleotides, interconnecting smooth ER tubules within tER transforms into vesicular tubular clusters (VTCs). The cytosolic domain of alpha(2)p24 and cytosolic COPI coatomer affect VTC formation. This is deduced from the effect of antibodies to the COOH-terminal tail of alpha(2)p24, but not of antibodies to the COOH-terminal tail of calnexin on this reconstitution, as well as the demonstrated recruitment of COPI coatomer to VTCs, its augmentation by GTPgammaS, inhibition by Brefeldin A (BFA), or depletion of beta-COP from cytosol. Therefore, the p24 family member, alpha(2)p24, and its cytosolic coat ligand, COPI coatomer, play a role in the de novo formation of VTCs and the generation of ER cargo exit sites.  (+info)

Increased clearance explains lower plasma levels of tissue-type plasminogen activator by estradiol: evidence for potently enhanced mannose receptor expression in mice. (21/916)

Several clinical studies have demonstrated an inverse relationship between circulating levels of estrogen and tissue-type plasminogen activator (t-PA). The present study was designed to test the hypothesis that estrogens lower plasma levels of t-PA by increasing its clearance from the bloodstream. 17alpha-Ethinyl estradiol (EE) treatment resulted in a significant increase in the clearance rate of recombinant human t-PA in mice (0.46 mL/min in treated mice v 0. 32 mL/min in controls; P <.01). The clearance of endogenous, bradykinin-released t-PA in rats was also significantly increased after EE treatment (area under the curve [AUC], 24.9 ng/mL. min in treated animals v 31.9 ng/mL. min in controls; P <.05). Two distinct t-PA clearance systems exist in vivo: the low-density lipoprotein receptor-related protein (LRP) on liver parenchymal cells and the mannose receptor on mainly liver endothelial cells. Inhibition of LRP by intravenous injection of receptor-associated protein (RAP) as a recombinant fusion protein with Salmonella japonicum glutathione S-transferase (GST) significantly retarded t-PA clearance in control mice (from 0.41 to 0.25 mL/min; n = 5, P <.001) and EE-treated mice (from 0.66 to 0.35 mL/min; n = 5, P <.005), but did not eliminate the difference in clearance capacity between the 2 experimental groups. Similar results were obtained in mice in which LRP was inhibited via overexpression of the RAP gene in liver by adenoviral gene transduction. In contrast, administration of mannan, a mannose receptor antagonist, resulted in identical clearances (0.22 mL/min in controls and 0.24 mL/min in EE-treated mice). Northern blot analysis showed a 6-fold increase in mannose receptor mRNA expression in the nonparenchymal liver cells of EE-treated mice, whereas the parenchymal LRP mRNA levels remained unchanged. These findings were confirmed at the protein level by ligand blotting and Western blotting analysis. Our results demonstrate that EE treatment results in increased plasma clearance rate of t-PA via induction of the mannose receptor and could explain for the inverse relationship between estrogen status and plasma t-PA concentrations as observed in humans.  (+info)

VIP36 localisation to the early secretory pathway. (22/916)

VIP36, an integral membrane protein previously isolated from epithelial MDCK cells, is an intracellular lectin of the secretory pathway. Overexpressed VIP36 had been localised to the Golgi complex, plasma membrane and endocytic structures suggesting post-Golgi trafficking of this molecule (Fiedler et al., 1994). Here we provide evidence that endogenous VIP36 is localised to the Golgi apparatus and the early secretory pathway of MDCK and Vero cells and propose that retention is easily saturated. High resolution confocal microscopy shows partial overlap of VIP36 with Golgi marker proteins. Punctate cytoplasmic structures colocalise with coatomer and ERGIC-53, labeling ER-Golgi intermediate membrane structures. Cycling of VIP36 is suggested by colocalisation with anterograde cargo trapped in pre-Golgi structures and modification of its N-linked carbohydrate by glycosylation enzymes of medial Golgi cisternae. Furthermore, after brefeldin A treatment VIP36 is segregated from resident Golgi proteins and codistributes with ER-Golgi recycling proteins.  (+info)

Palmitoylation of GAP-43 by the ER-Golgi intermediate compartment and Golgi apparatus. (23/916)

Palmitoylation of the neuronal plasticity protein GAP-43 has previously been shown to occur at the plasma membrane, but the site of initial palmitoylation has not been identified. To identify this organelle we have incubated GAP-43 with various subcellular fractions and have analyzed palmitoylation by the Triton X-114 partitioning method. In vitro-translated [(35)S]methionine-labeled GAP-43 was incubated with plasma membrane, nuclei, mitochondria, Golgi apparatus and a rough microsome preparation that contained the ER-Golgi intermediate compartment (ERGIC), but not plasma membrane or Golgi apparatus. GAP-43 partitioned into Triton X-114 in the presence of plasma membrane, Golgi, and ERGIC membranes, but not nuclei or mitochondria. Partitioning caused by the ERGIC was blocked by pretreatment of the membranes with the palmitoylation inhibitors dithiothreitol, tunicamycin, and low temperature, and by treatment of GAP-43 with iodoacetamide. The time course of partitioning agreed closely with the time course of incorporation of radioactive palmitate into proteins as reported previously. Because the ERGIC has a broad distribution in the cell, our results provide evidence that the ERGIC is the initial site of GAP-43 palmitoylation.  (+info)

Association of mannose-binding lectin gene heterogeneity with severity of lung disease and survival in cystic fibrosis. (24/916)

Mannose-binding lectin (MBL) is a key factor in innate immunity, and lung infections are the leading cause of morbidity and mortality in cystic fibrosis (CF). Accordingly, we investigated whether MBL variant alleles, which are associated with recurrent infections, might be risk factors for CF patients. In 149 CF patients, different MBL genotypes were compared with respect to lung function, microbiology, and survival to end-stage CF (death or lung transplantation). The lung function was significantly reduced in carriers of MBL variant alleles when compared with normal homozygotes. The negative impact of variant alleles on lung function was especially confined to patients with chronic Pseudomonas aeruginosa infection. Burkholderia cepacia infection was significantly more frequent in carriers of variant alleles than in homozygotes. The risk of end-stage CF among carriers of variant alleles increased 3-fold, and the survival time decreased over a 10-year follow-up period. Moreover, by using a modified life table analysis, we estimated that the predicted age of survival was reduced by 8 years in variant allele carriers when compared with normal homozygotes. Presence of MBL variant alleles is therefore associated with poor prognosis and early death in patients with CF.  (+info)