Bartonella koehlerae sp. nov., isolated from cats. (1/269)

Two of the 25 Bartonella isolates recovered during a prevalence study of Bartonella henselae bacteremia in domestic cats from the greater San Francisco Bay region were found to differ phenotypically and genotypically from all prior B. henselae isolates. These isolates, C-29 and C-30, which were recovered from the blood of two pet cats belonging to the same household, grew on chocolate agar as pinpoint colonies following 14 days of incubation at 35 degrees C in a candle jar but failed to grow on heart infusion agar supplemented with 5% rabbit blood. Additional phenotypic characteristics distinguished the isolates C-29 and C-30 from other feline B. henselae isolates. The restriction patterns obtained for C-29 and C-30 by citrate synthase PCR-restriction fragment length polymorphism (RFLP) analysis as well as by genomic RFLP could not be distinguished from each other but were distinctly different from that of the B. henselae type strain. In reciprocal reactions, DNAs from strains C-29 and C-30 were 97 to 100% related under optimal and stringent DNA reassociation conditions, with 0 to 0.5% divergence within related sequences. Labeled DNA from the type strain of B. henselae was 61 to 65% related to unlabeled DNAs from strains C-29 and C-30 in 55 degrees C reactions, with 5.0 to 5.5% divergence within the related sequences, and 31 to 41% related in stringent, 70 degrees C reactions. In reciprocal reactions, labeled DNAs from strains C-29 and C-30 were 68 to 92% related to those of the B. henselae type strain and other B. henselae strains, with 5 to 7% divergence. The 16S rRNA gene sequence of strain C-29 was 99.54% homologous to that of the type strain of B. henselae. On the basis of these findings, the two isolates C-29 and C-30 are designated a new species of Bartonella, for which we propose the name Bartonella koehlerae. The type strain of Bartonella koehlerae is strain C-29 (ATCC 700693).  (+info)

Clinical and pathologic evaluation of chronic Bartonella henselae or Bartonella clarridgeiae infection in cats. (2/269)

Human Bartonella infections result in diverse medical presentations, whereas many cats appear to tolerate chronic bacteremia without obvious clinical abnormalities. Eighteen specific-pathogen-free cats were inoculated with Bartonella henselae- and/or Bartonella clarridgeiae-infected cat blood and monitored for 454 days. Relapsing bacteremia did not correlate with changes in protein profiles or differences in antigenic protein recognition. Intradermal skin testing did not induce a delayed type hypersensitivity reaction to cat scratch disease skin test antigen. Thirteen cats were euthanatized at the end of the study. Despite persistent infection, clinical signs were minimal and gross necropsy results were unremarkable. Histopathology revealed peripheral lymph node hyperplasia (in all of the 13 cats), splenic follicular hyperplasia (in 9 cats), lymphocytic cholangitis/pericholangitis (in 9 cats), lymphocytic hepatitis (in 6 cats), lymphoplasmacytic myocarditis (in 8 cats), and interstitial lymphocytic nephritis (in 4 cats). Structures suggestive of Bartonella were visualized in some Warthin-Starry stained sections, and Bartonella DNA was amplified from the lymph node (from 6 of the 13 cats), liver (from 11 cats) heart (from 8 cats), kidney (from 9 cats), lung (from 2 cats), and brain (from 9 cats). This study indicates that B. henselae or B. clarridgeiae can induce chronic infection following blood transfusion in specific-pathogen-free cats and that Bartonella DNA can be detected in blood, brain, lymph node, myocardium, liver, and kidney tissues of both blood culture-positive cats and blood culture-negative cats. Detection of histologic changes in these cats supports a potential etiologic role for Bartonella species in several idiopathic disease processes in cats.  (+info)

Survey of Bartonella species infecting intradomicillary animals in the Huayllacallan Valley, Ancash, Peru, a region endemic for human bartonellosis. (3/269)

The natural cycle of Bartonella bacilliformis remains uncertain, and the suspected existence of animal reservoirs for the bacterium has never been convincingly demonstrated. We conducted a survey of Bartonella species infecting intradomicillary animals in a bartonellosis-endemic region of Peru, obtaining blood from 50 animals living in the homes of 11 families whose children had recently had bartonellosis. Bartonella-like bacteria were recovered from four of nine small rodents included in the study, but from none of the 41 domesticated animals. Identification and comparison of these isolates, and two Bartonella-like isolates obtained from Phyllotis mice in a different endemic region of Peru using serologic and genotypic methods indicated that although none were strains of B. bacilliformis, five were probably representatives of three previously unrecognized Bartonella species and one was a likely strain of the pathogenic species B. elizabethae.  (+info)

Bartonella henselae and Bartonella clarridgeiae infection in domestic cats from The Philippines. (4/269)

One hundred seven domestic cats from The Philippines were serologically tested to establish the prevalence of Bartonella infection. A subset of 31 of these cats also had whole blood collected to tentatively isolate Bartonella strains. Bartonella henselae and B. clarridgeiae were isolated from 19 (61%) of these cats. Bartonella henselae type I was isolated from 17 (89%) of the 19 culture-positive cats. Six cats (31%) were infected with B. clarridgeiae, of which four were coinfected with B. henselae. Sixty-eight percent (73 of 107) and 65% (70 of 107) of the cats had antibodies to B. henselae and B. clarridgeiae, respectively, detected by an immunofluorescence antibody (IFA) test at a titer > or = 1:64. When tested by enzyme immunoassay (EIA), 67 cats (62.6%) had antibodies to B. henselae and 71 cats (66.4%) had antibodies to B. clarridgeiae. Compared with the IFA test, the B. henselae EIA had a sensitivity of 90.4% and a specificity of 97%, with positive and negative predictive values of 98.5% and 82.5%, respectively. Similarly, the B. clarridgeiae EIA had a sensitivity of 97% and a specificity of 92% specificity, with positive and negative predictive values of 95.8% and 94.4%, respectively. The presence of antibodies to Bartonella was strongly associated with flea infestation. Domestic cats represent a large reservoir of Bartonella infection in the Philippines.  (+info)

Rats of the genus Rattus are reservoir hosts for pathogenic Bartonella species: an Old World origin for a New World disease? (5/269)

Bartonella species were isolated from the blood of 63 of 325 Rattus norvegicus and 11 of 92 Rattus rattus from 13 sites in the United States and Portugal. Infection in both Rattus species ranged from 0% (e.g., 0/87) to approximately 60% (e.g., 35/62). A 337-bp fragment of the citrate synthase (gltA) gene amplified by polymerase chain reaction was sequenced from all 74 isolates. Isolates from R. norvegicus were most similar to Bartonella elizabethae, isolated previously from a patient with endocarditis (93%-100% sequence similarity), followed by Bartonella grahamii and other Bartonella species isolated from Old World rodents (Clethrionomys species, Mus musculus, and Rattus species). These data suggest that Rattus species are a reservoir host for pathogenic Bartonella species and are consistent with a hypothesized Old World origin for Bartonella species recovered from Rattus species introduced into the Americas.  (+info)

Isolation of a new subspecies, Bartonella vinsonii subsp. arupensis, from a cattle rancher: identity with isolates found in conjunction with Borrelia burgdorferi and Babesia microti among naturally infected mice. (6/269)

Bacteremia with fever due to a novel subspecies of Bartonella vinsonii was found in a cattle rancher. The subspecies shared major characteristics of the genus Bartonella in terms of most biochemical features and cellular fatty acid profile, but it was distinguishable from other subspecies of B. vinsonii by good growth on heart infusion agar supplemented with X factor and by its pattern of enzymatic hydrolysis of peptide substrates. DNA relatedness studies verified that the isolate belonged to the genus Bartonella and that it was genotypically related to B. vinsonii. The highest level of relatedness was observed with recently characterized strains from naturally infected mice that were coinfected with Borrelia burgdorferi and Babesia microti. We propose the name Bartonella vinsonii subsp. arupensis subsp. nov. as the new subspecies to accommodate these human and murine isolates.  (+info)

An outbreak of acute bartonellosis (Oroya fever) in the Urubamba region of Peru, 1998. (7/269)

During May 1998, we conducted a case-control study of 357 participants from 60 households during an outbreak of acute bartonellosis in the Urubamba Valley, Peru, a region not previously considered endemic for this disease. Blood and insect specimens were collected and environmental assessments were done. Case-patients (n = 22) were defined by fever, anemia, and intra-erythrocytic coccobacilli seen in thin smears. Most case-patients were children (median age = 6.5 years). Case-patients more frequently reported sand fly bites than individuals of neighboring households (odds ratio [OR] = 5.8, 95% confidence interval [CI] = 1.2-39.2), or members from randomly selected households > or = 5 km away (OR = 8.5, 95% CI = 1.7-57.9). Bartonella bacilliformis isolated from blood was confirmed by nucleotide sequencing (citrate synthase [g/tA], 338 basepairs). Using bacterial isolation (n = 141) as the standard, sensitivity, specificity, and positive predictive value of thin smears were 36%, 96%, and 44%, respectively. Patients with clinical syndromes compatible with bartonellosis should be treated with appropriate antibiotics regardless of thin-smear results.  (+info)

Seroprevalence of Bartonella henselae in cats in Germany. (8/269)

Bartonella henselae and B. quintana infections in man are associated with various clinical manifestations including cat-scratch disease, bacillary angiomatosis and bacteraemia. While cats are the natural reservoir for B. henselae, the source of B. quintana is unclear. In this study, the sera of 713 cats from Germany were examined for the presence of antibodies against B. henselae, B. quintana or Afipia felis by an indirect immunofluorescence assay (IFA). Bartonella-specific antibody titres of > or =50 were found in 15.0% of the cats. There was substantial cross-reactivity among the various Bartonella antigens, although single sera showed high titres against B. henselae but not against B. quintana and vice versa. Antibodies against A. felis were not detected in any of these cats. Statistical analysis indicated that there is no correlation between Bartonella infections and the sex, age or breed of the cat or its hunting behavior. There was also no correlation between bartonella and toxoplasma infections in cats. However, whereas 16.8% of cats from northern Germany had B. quintana-specific antibodies, only 8.0% of cats from southern Germany were seropositive for B. quintana. No statistically significant difference was found for B. henselae. IFA-positive and IFA-negative sera were used for immunoblot analysis including B. henselae and B. quintana. Marked reactivity was observed with protein bands at 80, 76, 73, 65, 37, 33 and 15 kDa. The results of this study suggest that B. henselae, and possibly a B. quintana-related pathogen, but not A. felis, are common in cats in Germany, and that there are differences in the geographic distribution of bartonella infections in cats.  (+info)