The biological clock of very premature primate infants is responsive to light. (1/1103)

Each year more than 250,000 infants in the United States are exposed to artificial lighting in hospital nurseries with little consideration given to environmental lighting cycles. Essential in determining whether environmental lighting cycles need to be considered in hospital nurseries is identifying when the infant's endogenous circadian clock becomes responsive to light. Using a non-human primate model of the developing human, we examined when the circadian clock, located in the hypothalamic suprachiasmatic nuclei (SCN), becomes responsive to light. Preterm infant baboons of different ages were exposed to light (5,000 lux) at night, and then changes in SCN metabolic activity and gene expression were assessed. After exposure to bright light at night, robust increases in SCN metabolic activity and gene expression were seen at ages that were equivalent to human infants at 24 weeks after conception. These data provide direct evidence that the biological clock of very premature primate infants is responsive to light.  (+info)

Temporal analysis of the chromatic flash VEP--separate colour and luminance contrast components. (2/1103)

Temporal analysis of the chromatic flash visual evoked potential (VEP) was studied in human subjects with normal and anomalous colour vision using a deterministic pseudo-random binary stimulus (VERIS). Five experiments were carried out on four normal subjects investigating heterochromatic red-green exchange and single colour/achromatic (either red/grey or green/grey) exchange over a wide range of luminance ratios for the two stimuli, the effects of lowered mean luminance on the chromatic VEP and the effects of colour desaturation at constant mean luminance and constant luminance contrast. Finally, the performance of three dichromats, a protanope and two deuteranopes, on heterochromatic exchange VEP and on colour desaturation were investigated. In contrast to the chromatic electroretinogram, which shows great symmetry with respect to luminance ratio on opposite sides of the isoluminant point, the chromatic VEP demonstrated a distinct asymmetry when the colours exchanged included red. On the red side of isoluminance (red more luminant than green), a wave with longer latency and altered waveform became dominant. The effects of green stimulation were indistinguishable from those of achromatic stimulation at the same luminance contrast over the whole range of chromatic contrast and for all levels of desaturation studied. Desaturation of red with constant luminance contrast (desaturated red/grey stimulation) resulted in a systematic alteration in the evoked waveform. Subtraction of the achromatic first- and second-order responses from responses recorded in the red desaturation series resulted in remarkably uniform waveforms, with peak amplitudes growing linearly with saturation. The absence of interaction between achromatic and coloured components for all (including the most intense colour) stimulus parameters used suggests that the generators of these components are separate. Recordings from the dichromats showed that the contrast response minimum shifted from the point of photopic isoluminance to the point of zero cone contrast (at the silent substitution point) for the remaining cone type. The waveforms recorded with a series of luminance ratios were much simpler than those recorded from trichromats and symmetrical with respect to their isoluminant points. Despite the indication of the presence of L cones of apparently normal spectral sensitivity in the deuteranopes (on the basis of flicker photometry), there was no evidence for a red-sensitive component in the desaturation or heterochromatic stimulation series. The results are discussed in terms of the possibility of separate generation of chromatic and achromatic contributions to the VEP.  (+info)

Light-dependent translocation of a phytochrome B-GFP fusion protein to the nucleus in transgenic Arabidopsis. (3/1103)

Phytochrome is a ubiquitous photoreceptor of plants and is encoded by a small multigene family. We have shown recently that a functional nuclear localization signal may reside within the COOH-terminal region of a major member of the family, phytochrome B (phyB) (Sakamoto, K., and A. Nagatani. 1996. Plant J. 10:859-868). In the present study, a fusion protein consisting of full-length phyB and the green fluorescent protein (GFP) was overexpressed in the phyB mutant of Arabidopsis to examine subcellular localization of phyB in intact tissues. The resulting transgenic lines exhibited pleiotropic phenotypes reported previously for phyB overexpressing plants, suggesting that the fusion protein is biologically active. Immunoblot analysis with anti-phyB and anti-GFP monoclonal antibodies confirmed that the fusion protein accumulated to high levels in these lines. Fluorescence microscopy of the seedlings revealed that the phyB-GFP fusion protein was localized to the nucleus in light grown tissues. Interestingly, the fusion protein formed speckles in the nucleus. Analysis of confocal optical sections confirmed that the speckles were distributed within the nucleus. In contrast, phyB-GFP fluorescence was observed throughout the cell in dark-grown seedlings. Therefore, phyB translocates to specific sites within the nucleus upon photoreceptor activation.  (+info)

Behavioral and neurochemical alterations evoked by p-Chlorophenylalanine application in rats examined in the light-dark crossing test. (4/1103)

The aim of the present study is to examine the effects of serotonin synthesis inhibition with p-Chlorophenylalanine (p-CPA) in rats on (1) anxiety behavior examined in the light-dark crossing test and, (2) regional brain concentration of monoamines (NA, DA and 5-HT) and their metabolites (MHPG, DOPAC, HVA and 5-HIAA) as well as GABA in the hypothalamus, amygdala, hippocampus, midbrain central gray matter and the frontal cortex. Treatment of animals with p-CPA produced a significant increase in time out from the illuminated part of the chamber and in time of locomotor activity in the illuminated part of the chamber. HPLC analysis showed a significant reduction of 5-HT and 5-HIAA concentration in all examined brain regions with the exception of the frontal cortex. Additionally, a significant decrease in DA and its metabolites, DOPAC and HVA occurred in the hypothalamus and amygdala. Moreover, we observed a significant decrease in frontal cortex NA concentration after p-CPA administration. The results of our study suggest that administration of p-CPA is effective in reduction of anxiety through depletion of 5-HT accompanied by diminution of catecholamines, especially DA and its metabolites in the main emotional brain regions.  (+info)

Light-induced uncoupling of multioscillatory circadian system in a diurnal rodent, Asian chipmunk. (5/1103)

Responses of the circadian locomotor rhythm to a single light pulse were examined in a diurnal rodent, Asian chipmunk, by exposing it to a 1-h light pulse of 2,000 lx under constant conditions. A light pulse given at the beginning and end of the subjective night produced a phase delay and advance shifts, respectively. When pulsed around the midpoint of the subjective night, the circadian rhythm was shifted as much as 12 h in most animals or became arrhythmic in some. In the latter case, an additional light pulse restored the circadian rhythm. Some animals were unresponsive to light. The phase response curve is categorized as type 0. A large phase-shift was sometimes followed by splitting of an activity band into two components. These results are best explained by an assumption that the chipmunk circadian system is composed of two mutually coupled major oscillators, each of which is constituted by multiple oscillators. Our results suggest that light affects the oscillatory coupling not only of the major oscillators but also of constitutional oscillators.  (+info)

Testing optimum viewing conditions for mammographic image displays. (6/1103)

The viewbox luminance and viewing room light level are important parameters in a medical film display, but these parameters have not had much attention. Spatial variations and too much room illumination can mask real signal or create the false perception of a signal. This presentation looks at how scotopic light sources and dark-adapted radiologists may identify more real diseases.  (+info)

Effects of a benzodiazepine, lorazepam, on motion integration and segmentation: an effect on the processing of line-ends? (7/1103)

Previous studies have shown that the perceptual integration of component motions distributed across space is inhibited whenever segmentation cues, such as line-ends, are salient. Herein, we investigate to what extent enhanced inhibition induced by lorazepam, a benzodiazepine facilitating the fixation of GABA on GABAA receptors, modifies the balance between motion integration and motion segmentation at the behavioural level. Motion integration was tested in 16 healthy volunteers taking a single and oral dose of either placebo or lorazepam (0.038 mg kg-1). The stimulus consisted of an outlined diamond presented behind four, otherwise invisible, apertures and translating along a circular trajectory (Lorenceau & Shiffrar (1992). Vision Research, 32, 263-273). Under these conditions, recovering the global diamond direction requires the integration of the component motions available within each aperture. The observers were asked to discriminate the global, clockwise or counter-clockwise, diamond direction under difficult--at high luminance contrasts--or easy--at low luminance contrasts--conditions. Overall, reaction times and error rates increased in the lorazepam group as compared to the placebo group, suggesting strong non-specific effects. However, the changes in performance in the lorazepam group are not homogeneous across conditions, suggesting that lorazepam also induces specific effects that modulate the integration/segmentation balance. Additional experiments performed with visible apertures or visible diamond vertices indicate that the effects of lorazepam are unlikely to reflect a deficit of motion processing or motion integration mechanisms since performance is only slightly impaired in the lorazepam as compared to the placebo group under these conditions. These results suggest that lorazepam might specifically modulate the saliency of line-ends, presumably because processing these features involves inhibitory mechanisms using GABA as a neuromediator, and in turn modify the balance between motion integration and segmentation.  (+info)

Spatial masking does not reveal mechanisms selective to combined luminance and red-green color. (8/1103)

Detection thresholds plotted in the L and M cone-contrast plane have shown that there are two primary detection mechanisms, a red-green hue mechanism and a light-dark luminance mechanism. However, previous masking results suggest there may be additional mechanisms, responsive to combined features like bright and red or dark and green. We measured detection thresholds for a 1.2 c deg-1 sine-wave grating in the presence of a spatially matched mask grating which was either stationary, dynamically jittered or flickered. The stimuli could be set to any direction in the L,M plane. The appearance of selectivity for combined hue and luminance arose only in conditions where adding the test to the mask modified the spatial phase offset between the luminance and red-green stimulus components. Sensitivity was very high for detecting this spatial phase offset. When this extra cue was eliminated, masking contours in the L,M plane could be largely described by the classical red-green and luminance mechanisms.  (+info)