A shoot meristem-like organ in animals; monopodial and sympodial growth in Hydrozoa. (1/105)

Thecate Hydrozoa produce stems from which polyps branch off. Similar to plants these stems form in two ways, either in a sympodial or in a monopodial type of growth. In the latter group a terminal organ develops which has similarities to a shoot apical meristem of higher plants: it elongates without a further differentiation. Similar to leaf formation in plants, thecate Hydrozoa produce polyps in a repetitive manner. This process continues during the whole life of the animal and has not yet been found to be limited by internal mechanisms. We studied the monopodially growing thecate Hydrozoon Dynamena pumila and suggest that the stem tip, the apical shoot meristem-like organ, is a polyp primordium hindered to develop into a polyp by the laterally developing polyps.  (+info)

Redox signaling in the growth and development of colonial hydroids. (2/105)

Redox signaling provides a quick and efficient mechanism for clonal or colonial organisms to adapt their growth and development to aspects of the environment, e.g. the food supply. A 'signature' of mitochondrial redox signaling, particularly as mediated by reactive oxygen species (ROS), can be elucidated by experimental manipulation of the electron transport chain. The major sites of ROS formation are found at NADH dehydrogenase of complex I and at the interface between coenzyme Q and complex III. Inhibitors of complex III should thus upregulate ROS from both sites; inhibitors of complex I should upregulate ROS from the first but not the second site, while uncouplers of oxidative phosphorylation should downregulate ROS from both sites. To investigate the possibility of such redox signaling, perturbations of colony growth and development were carried out using the hydroid Podocoryna carnea. Oxygen uptake of colonies was measured to determine comparable physiological doses of antimycin A(1) (an inhibitor of complex III), rotenone (an inhibitor of complex I) and carbonyl cyanide m-chlorophenylhydrazone (CCCP; an uncoupler of oxidative phosphorylation). Using these doses, clear effects on colony growth and development were obtained. Treatment with antimycin A(1) results in 'runner-like' colony growth, with widely spaced polyps and stolon branches, while treatment with CCCP results in 'sheet-like' growth, with closely spaced polyps and stolon branches. Parallel results have been obtained previously with azide, an inhibitor of complex IV, and dinitrophenol, another uncoupler of oxidative phosphorylation. Perhaps surprisingly, rotenone produced effects on colony development similar to those of CCCP. Assays of peroxides using 2',7'-dichlorofluorescin diacetate and fluorescent microscopy suggest a moderate difference in ROS formation between the antimycin and rotenone treatments. The second site of ROS formation (the interface between coenzyme Q and complex III) may thus predominate in the signaling that regulates colony development. The fat-rich, brine shrimp diet of these hydroids may be relevant in this context. Acyl CoA dehydrogenase, which catalyzes the first step in the mitochondrial beta-oxidation of fatty acids, carries electrons to coenzyme Q, thus bypassing complex I. These results support a role for redox signaling, mediated by ROS, in colony development. Nevertheless, other redox sensors between complexes I and III may yet be found.  (+info)

Evolutionary aspects of developmentally regulated helix-loop-helix transcription factors in striated muscle of jellyfish. (3/105)

The function of basic helix-loop-helix (bHLH) proteins in cell differentiation was shown to be conserved from Drosophila to vertebrates, exemplified by the function of MyoD in striated muscle differentiation. In phylogeny striated muscle tissue appears first in jellyfish and the question of its evolutionary position is controversially discussed. For this reason we have studied the developmental role of myogenic bHLH genes in medusa development. Based on their dimerization ability, four genes of the bHLH family of transcription factors were isolated from the hydrozoan jellyfish Podocoryne carnea. While the proteins Id and Ash group with cognate family members from bilaterians, Net-like and JellyD1 could not be unequivocally classified. Id is expressed during the medusa budding process and in the adult medusa, Ash and Net-like are expressed in all life cycle stages from egg to adult medusa and JellyD1 is expressed in the blastula and gastrula stages, the planula larva, and in late medusa bud stages. The dimerization specificity, the expression pattern, and the conservation of two residues specific for a MyoD bHLH domain suggest that JellyD1 is related to an ancestral MyoD gene. Id, Net-like, and JellyD1 are either expressed in the entocodon or its derived tissues, the striated and smooth muscle of the bell. These findings strengthen the hypothesis that the entocodon is a mesoderm-like structure and that the common ancestor of Cnidaria and Bilateria was more complex in cell-type architecture and body organization than commonly thought.  (+info)

Larval behavioral, morphological changes, and nematocyte dynamics during settlement of actinulae of Tubularia mesembryanthemum, Allman 1871 (Hydrozoa: Tubulariidae). (4/105)

The marine colonial hydroid Tubularia mesembryanthemum produces a morphologically unique dispersive stage, the actinula larva. Detailed observations were made on the behaviors and nematocyte dynamics of actinula larvae during attachment and morphogenesis by employing microscopic and time lapse video techniques. These observations produced four primary results. (1) Actinula larvae demonstrated two forms of attachment: temporary attachment by atrichous isorhiza (AI)-nematocysts discharged from the aboral tentacle (AT) tips-and permanent settlement by cement secretion from the columnar gland cells of the basal protrusion. (2) During larval settlement, numerous AIs were discharged from the AT tips with sinuous movement and rubbing of the tentacles onto the substrata, leading to "nematocyte-printing" around the settlement site. (3) Simultaneous with the discharge of the AIs, migration of stenoteles, desmonemes, and microbasic mastigophores occurred, resulting in a dramatic change of nematocyte composition in the ATs after larval settlement. This was in parallel with changes in larval behavior and the tentacle function. (4) Nematocyte-printing behavior during settlement could be recognized as metamorphic behavior responsible for irreversible changes in AT function, from attachment to feeding and defense.  (+info)

Allogeneic interactions in Hydractinia: is the transitory chimera beneficial? (5/105)

The colonial marine hydroid, Hydractinia, exhibits four possible outcomes to allogeneic contacts: passive rejection, aggressive rejection, stable fusion and transitory fusion. In the special case of transitory fusion, Hydractinia colonies undergo tissue fusion, followed by tissue death at the original contact area, and colony separation. This type of rejection is different in several aspects from the rejection process that accompanies incompatible encounters. It has been suggested that in transitory fusion, the colonies gain immediate benefits from fusion, mainly due to size increase, without succumbing to costs associated with fusion (germ line parasitism). We report a long-term observation of repeated fusion and separation cycles in clones featuring transitory fusion that revealed a slow-down of specific growth rates following fusion, and recovery in growth rates following separation. Very rapid transfer of stained material between partners in transitory chimeras provides suggestive evidence that protection against germ line parasitism is far from being guaranteed by separation. Our data cast doubt as to whether the benefits considered for transitory fusion are sustainable and support the already made suggestion that fusion with self, rather than fusion with kin, has been the major selective force governing the evolution of allorecognition in colonial invertebrates.  (+info)

The role of alpha-amidated neuropeptides in hydroid development--LWamides and metamorphosis in Hydractinia echinata. (6/105)

Peptides are increasingly attracting attention as primary signals in the control of development. Even though a large number of peptides have been characterized in cnidarians, little experimental evidence addresses their endogenous role. The life cycle of Hydractinia echinata includes metamorphosis from planula larva into the adult stage of the polyp. This process of stage conversion includes internal signalling, which controls cell cycle activity, cell differentiation, cell death and proportion-controlled morphogenesis. LWamide peptides are considered to be part of the control system. We implemented methods to silence gene activity by dsRNAi in Hydractinia and show a substantial knock-down of LWamide gene activity. In addition, LWamide function was knocked-out pharmacologically by targeting the biosynthesis of amidated peptides and thus preventing functional LWamides. Here we show that extinction of bioactive LWamides from planulae causes loss of metamorphosis competence, a deficiency which can be rescued by synthetic LWamide peptides. Thus, it is shown that LWamides are indispensable and act by conveying outer metamorphosis stimuli to target cells within the animal. Considering non-availability of genetic analysis and the so-far limited success in expressing transgenes in hydroids, gene functions are difficult to analyse in hydroids. The approach as outlined here is suitable for functional analysis of genes encoding amidated peptides in hydroids.  (+info)

GFP-like proteins as ubiquitous metazoan superfamily: evolution of functional features and structural complexity. (7/105)

Homologs of the green fluorescent protein (GFP), including the recently described GFP-like domains of certain extracellular matrix proteins in Bilaterian organisms, are remarkably similar at the protein structure level, yet they often perform totally unrelated functions, thereby warranting recognition as a superfamily. Here we describe diverse GFP-like proteins from previously undersampled and completely new sources, including hydromedusae and planktonic Copepoda. In hydromedusae, yellow and nonfluorescent purple proteins were found in addition to greens. Notably, the new yellow protein seems to follow exactly the same structural solution to achieving the yellow color of fluorescence as YFP, an engineered yellow-emitting mutant variant of GFP. The addition of these new sequences made it possible to resolve deep-level phylogenetic relationships within the superfamily. Fluorescence (most likely green) must have already existed in the common ancestor of Cnidaria and Bilateria, and therefore GFP-like proteins may be responsible for fluorescence and/or coloration in virtually any animal. At least 15 color diversification events can be inferred following the maximum parsimony principle in Cnidaria. Origination of red fluorescence and nonfluorescent purple-blue colors on several independent occasions provides a remarkable example of convergent evolution of complex features at the molecular level.  (+info)

The germ line and somatic stem cell gene Cniwi in the jellyfish Podocoryne carnea. (8/105)

In most animal phyla from insects to mammals, there is a clear division of somatic and germ line cells. This is however not the case in plants and some animal phyla including tunicates, flatworms and the basal phylum Cnidaria, where germ stem cells arise de novo from somatic cells. Piwi-like genes represent essential stem cell genes in diverse multicellular organisms. The cnidarian Piwihomolog Cniwiwas cloned from Podocoryne carnea, a hydrozoan with a full life cycle. CniwiRNA is present in all developmental stages with highest levels in the egg and the medusa. In the adult medusa, Cniwi expression is prominent in the gonads where it likely functions as a germ stem cell gene. The gene is also expressed, albeit at low levels, in differentiated somatic cells like the striated muscle of the medusa. Isolated striated muscle cells can be induced to transdifferentiate into smooth muscle cells which proliferate and differentiate into nerve cells. Cniwi expression is upregulated transiently after induction of transdifferentiation and again when the emerging smooth muscle cells proliferate and differentiate. The continuous low-level expression of an inducible stem cell gene in differentiated somatic cells may underlie the ability to form medusa buds from polyp cells and explain the extraordinary transdifferentation and regeneration potential of Podocoryne carnea.  (+info)