Growth hormone-releasing peptide-2 infusion synchronizes growth hormone, thyrotrophin and prolactin release in prolonged critical illness. (1/557)

OBJECTIVE: During prolonged critical illness, nocturnal pulsatile secretion of GH, TSH and prolactin (PRL) is uniformly reduced but remains responsive to the continuous infusion of GH secretagogues and TRH. Whether such (pertinent) secretagogues would synchronize pituitary secretion of GH, TSH and/or PRL is not known. DESIGN AND METHODS: We explored temporal coupling among GH, TSH and PRL release by calculating cross-correlation among GH, TSH and PRL serum concentration profiles in 86 time series obtained from prolonged critically ill patients by nocturnal blood sampling every 20 min for 9 h during 21-h infusions of either placebo (n=22), GHRH (1 microg/kg/h; n=10), GH-releasing peptide-2 (GHRP-2; 1 microg/kg/h; n=28), TRH (1 microg/kg/h; n=8) or combinations of these agonists (n=8). RESULTS: The normal synchrony among GH, TSH and PRL was absent during placebo delivery. Infusion of GHRP-2, but not GHRH or TRH, markedly synchronized serum profiles of GH, TSH and PRL (all P< or =0.007). After addition of GHRH and TRH to the infusion of GHRP-2, only the synchrony between GH and PRL was maintained (P=0.003 for GHRH + GHRP-2 and P=0.006 for TRH + GHRH + GHRP-2), and was more marked than with GHRP-2 infusion alone (P=0.0006 by ANOVA). CONCLUSIONS: The nocturnal GH, TSH and PRL secretory patterns during prolonged critical illness are herewith further characterized to include loss of synchrony among GH, TSH and PRL release. The synchronizing effect of an exogenous GHRP-2 drive, but not of GHRH or TRH, suggests that the presumed endogenous GHRP-like ligand may participate in the orchestration of coordinated anterior pituitary hormone release.  (+info)

Intrapreoptic microinjection of GHRH or its antagonist alters sleep in rats. (2/557)

Previous reports indicate that growth hormone-releasing hormone (GHRH) is involved in sleep regulation. The site of action mediating the nonrapid eye movement sleep (NREMS)-promoting effects of GHRH is not known, but it is independent from the pituitary. GHRH (0.001, 0. 01, and 0.1 nmol/kg) or a competitive antagonist of GHRH (0.003, 0.3, and 14 nmol/kg) was microinjected into the preoptic area, and the sleep-wake activity was recorded for 23 hr after injection in rats. GHRH elicited dose-dependent increases in the duration and in the intensity of NREMS compared with that in control records after intrapreoptic injection of physiological saline. The antagonist decreased the duration and intensity of NREMS and prolonged sleep latency. Consistent alterations in rapid eye movement sleep (REMS) and in brain temperature were not found. The GHRH antagonist also attenuated the enhancements in NREMS elicited by 3 hr of sleep deprivation. Histological verification of the injection sites showed that the majority of the effective injections were in the preoptic area and the diagonal band of Broca. The results indicate that the preoptic area mediates the sleep-promoting activity of GHRH.  (+info)

Inhibition of growth, production of insulin-like growth factor-II (IGF-II), and expression of IGF-II mRNA of human cancer cell lines by antagonistic analogs of growth hormone-releasing hormone in vitro. (3/557)

Antagonistic analogs of growth hormone-releasing hormone (GHRH) suppress growth of various tumors in vivo. This effect is exerted in part through inhibition of the GHRH-GH-insulin-like growth factor (IGF)-I axis. Nevertheless, because autocrine/paracrine control of proliferation by IGF-II also is a major factor in many tumors, the interference with this growth-stimulating pathway would offer another approach to tumor control. We thus investigated whether GHRH antagonists MZ-4-71 and MZ-5-156 also act on the tumor cells directly by blocking the production of IGF-II. An increase in the IGF-II concentration in the media during culture was found in 13 of 26 human cancer cell lines tested. Reverse transcription-PCR studies on 8 of these cell lines showed that they also expressed IGF-II mRNA. Antagonists of GHRH significantly inhibited the rate of proliferation of mammary (MDA-MB-468 and ZR-75-1), prostatic (PC-3 and DU-145), and pancreatic (MiaPaCa-2, SW-1990, and Capan-2) cancer cell lines as shown by colorimetric and [3H]thymidine incorporation tests and reduced the expression of IGF-II mRNA in the cells and the concentration of IGF-II secreted into the culture medium. Growth and IGF-II production of lung (H-23 and H-69) and ovarian (OV-1063) cancer cells that express mRNA for IGF-II and excrete large quantities of IGF-II also was marginally suppressed by the antagonists. These findings suggest that antagonistic analogs of GHRH can inhibit growth of certain tumors not only by inhibiting the GHRH-GH-IGF-I axis, but also by reducing the IGF-II production and by interfering with the autocrine regulatory pathway.  (+info)

Humoral regulation of physiological sleep: cytokines and GHRH. (4/557)

Interleukin-1, tumour necrosis factor, and growth hormone releasing hormone form part of the humoral mechanisms regulating physiological sleep. Their injection enhances non-rapid-eye-movement sleep whereas their inhibition reduces spontaneous sleep and sleep rebound after sleep deprivation. Changes in their mRNA levels and changes in their protein levels in the brain are consistent within their proposed role in sleep regulation. Furthermore, results from transgenic and mutant animals also are suggestive of their role in sleep regulation. The sites responsible for the growth hormone releasing hormone somnogenic activity seem to reside in the anterior hypothalamus/basal forebrain. Somnogenic sites for interleukin-1 and tumour necrosis factor likely include the anterior hypothalamus, but also may extend beyond that area. These substances elicit non-rapid-eye-movement sleep via a biochemical cascade that includes other known sleep regulatory substances.  (+info)

Leptin regulates GH secretion in the rat by acting on GHRH and somatostatinergic functions. (5/557)

Leptin is a hormonal product of adipose tissue whose expression reflects the body state of nutritional reserves. Previous experiments have demonstrated that leptin is one of the metabolic signals capable of regulating GH secretion. The aim of the present study was to evaluate whether CNS-mediated mechanisms underlie the GH-releasing activity of leptin. Freely moving mature male rats were injected i.c.v with leptin or isovolumetric amounts of diluent once daily for 3 days and were killed 2 h after the last administration. Central injection of leptin increased pituitary GH mRNA levels by 53. 2% and hypothalamic GHRH mRNA by 61.8%, and reduced somatostatin mRNA levels by 41.5%. To evaluate the direct effect of leptin on the pituitary, it was added alone or in combination with GHRH to primary cultures of anterior pituitary cells. Addition of leptin (10(-11)-10(-7) M) did not alter basal GH release nor the GH-releasing activity of GHRH. These results demonstrate that leptin is a metabolic signal that regulates GH secretion in the rat by acting on hypothalamic GH-regulatory hormones.  (+info)

Differential expression of gonadotropin and prolactin antigens by GHRH target cells from male and female rats. (6/557)

There is a 2- to 3-fold increase in luteinizing hormone-beta (LHbeta) or follicle-stimulating hormone-beta (FSHbeta) antigen-bearing gonadotropes during diestrus in preparation for the peak LH or FSH secretory activity. This coincides with an increase in cells bearing LHbeta or FSHbeta mRNA. Similarly, there is a 3- to 4-fold increase in the percentage of cells that bind GnRH. In 1994, we reported that this augmentation in gonadotropes may come partially from subsets of somatotropes that transitionally express LHbeta or FSHbeta mRNA and GnRH-binding sites. The next phase of the study focused on questions relating to the somatotropes themselves. Do these putative somatogonadotropes retain a somatotrope phenotype? As a part of ongoing studies that address this question, a biotinylated analog of GHRH was produced, separated by HPLC and characterized for its ability to elicit the release of GH as well as bind to pituitary target cells. The biotinylated analog (Bio-GHRH) was detected cytochemically by the avidin-peroxidase complex technique. It could be displaced by competition with 100-1000 nM GHRH but not corticotropin-releasing hormone or GnRH. In cells from male rats exposed to 1 nM Bio-GHRH, 28+/-6% (mean+/-s.d) of pituitary cells exhibited label for Bio-GHRH (compared with 0.8+/-0.6% in the controls). There were no differences in percentages of GHRH target cells in populations from proestrous (28+/-5%) and estrous (25+/-5%) rats. Maximal percentages of labeled cells were seen following addition of 1 nM analog for 10 min. In dual-labeled fields, GHRH target cells contained all major pituitary hormones, but their expression of ACTH and TRH was very low (less than 3% of the pituitary cell population) and the expression of prolactin (PRL) and gonadotropins varied with the sex and stage of the animal. In all experimental groups, 78-80% of Bio-GHRH-reactive cells contained GH (80-91% of GH cells). In male rats, 33+/-6% of GHRH target cells contained PRL (37+/-9% of PRL cells) and less than 20% of these GHRH-receptive cells contained gonadotropins (23+/-1% of LH and 31+/-9% of FSH cells). In contrast, expression of PRL and gonadotropins was found in over half of the GHRH target cells from proestrous female rats (55+/-10% contained PRL; 56+/-8% contained FSHbeta; and 66+/-1% contained LHbeta). This reflected GHRH binding by 71+/-2% PRL cells, 85+/-5% of LH cells and 83+/-9% of FSH cells. In estrous female rats, the hormonal storage patterns in GHRH target cells were similar to those in the male rat. Because the overall percentages of cells with Bio-GHRH or GH label do not vary among the three groups, the differences seen in the proestrous group reflect internal changes within a single group of somatotropes that retain their GHRH receptor phenotype. Hence, these data correlate with earlier findings that showed that somatotropes may be converted to transitional gonadotropes just before proestrus secretory activity. The LH and FSH antigen content of the GHRH target cells from proestrous rats demonstrates that the LHbeta and FSHbeta mRNAs are indeed translated. Furthermore, the increased expression of PRL antigens by these cells signifies that these convertible somatotropes may also be somatomammotropes.  (+info)

Long-term treatment with bromocriptine of a plurihormonal pituitary adenoma secreting thyrotropin, growth hormone and prolactin. (7/557)

A 48-year-old female presented with acromegaly, amenorrhea and hyperthyroidism associated with high serum free T4 levels and measurable TSH concentrations. The administration of GHRH induced significant increases in GH, PRL and TSH. Conversely, intravenous infusion of dopamine or oral administration of bromocriptine effectively inhibited GH, PRL and TSH secretion. Serum alpha-subunit levels were neither affected by GHRH, dopamine nor bromocriptine. Transsphenoidal surgery was performed and immunostaining of the tissue showed that the adenoma cells were positive for GH, PRL or TSH. The patient was treated with bromocriptine at a daily oral dose of 10 mg after surgery. Serum TSH were initially suppressed but returned within reference intervals with persistent normalized free T4 levels. Serum PRL became undetectable and GH levels were stable around 6 ng/ml except the periods of poor drug compliance, when serum TSH, GH and PRL levels rose considerably. The patient was followed-up for 10 years without any change in the residual adenoma tissues as detected by magnetic resonance imaging. These findings suggest that long-term bromocriptine therapy is effective in treating the hypersecretory state of a plurihormonal adenoma secreting TSH, GH and PRL.  (+info)

Effects of cholinergic muscarinic blockade on growth hormone responses to growth hormone-releasing hormone in uraemic patients. (8/557)

BACKGROUND: Several alterations in growth hormone (GH) secretion have been reported in patients with chronic renal insufficiency. However, cholinergic modulation of somatotopic cell function has not been fully clarified in uraemic patients. To gain further insight into the disrupted mechanism of GH regulation in chronic renal failure, we investigated whether the blockade of cholinergic muscarinic receptor with pirenzepine could modify the response of GH to its physiological releasing hormone. METHODS: Eight uraemic male patients on peritoneal dialysis and six normal controls were studied. All subjects underwent two endocrine tests in random order. In one of them placebo was administered 60 min before the injection of GH-releasing hormone (GHRH, 100 microg, i.v. in bolus at 0 min). In another the muscarinic blocking agent pirenzepine, 100 mg p.o., was administered at that time. Blood samples for GH were collected at -60, 0, 15, 30, 45, 60 and 90 min. RESULTS: Baseline plasma GH concentrations were similar in patients and controls. GH responses to GHRH were characterized by great interindividual variability in uraemic patients with regard to the amount and the time to maximal peak. In the placebo plus GHRH test, the maximum GH concentrations in patients (14.0 +/- 3.2 microg/l) were similar to those reached by controls (18.0 +/- 3.1 microg/l), although GH secretion was more sustained in patients. The area under the secretory curve (AUC) of GH secretion in patients was also similar to that found in controls (14.4 +/- 2.9 vs 15.4 +/- 3.3 microg/h/l). When subjects were given pirenzepine before GHRH injection an abolishment of GHRH-induced GH release was observed in all controls and in all but one of the uraemic patients. The AUC of GH secretion was, therefore, significantly reduced both in uraemic patients (4.1 +/- 2.0 microg/h/l, P<0.05) and in control subjects (2.0 +/- 0.3 microg/h/l, P<0.05). CONCLUSION: These results suggest that GH secretion in uraemic patients is modulated, at least in part, by a cholinergic mechanism. The muscarinic blockade, possibly acting via an increase in somatostatin release, is able to inhibit GH release in response to direct pituitary stimulation with GHRH.  (+info)