Bovine polymorphonuclear neutrophil-mediated phagocytosis and an immunoglobulin G2 protease produced by Porphyromonas levii. (1/297)

Acute interdigital phlegmon (AIP) is a commonly occurring anaerobic bacterial infection in cattle. This study examined in vitro the interaction of bovine polymorphonuclear granulocytic neutrophils (PMN) from blood with bacterial species involved in AIP. Polymorphonuclear neutrophils were purified from whole bovine blood, exposed to one of the three putative etiologic agents of AIP and comparatively assessed for phagocytosis using light microscopy. Fusobacterium necrophorum and Prevotella intermedia were effectively phagocytosed by PMN, but Porphyromonas levii was phagocytosed significantly less effectively by PMN. The effect of high titre anti-P. levii bovine serum on antibody-mediated phagocytosis by PMN was also evaluated. High titre serum increased the efficiency of phagocytosis of P. levii by bovine PMN. This was independent of heat labile complement factors. Antibodies specific for P. levii were assessed for protease activity capable of cleaving bovine immunoglobulins (IgG, IgG1, IgG2, and IgM). Partially purified supernatant from broth cultures of P. levii were incubated with biotinylated immunoglobulins (Igs). Samples were taken from times 0 to 72 h and examined using SDS-PAGE followed by Western blot analysis. Streptavidin-alkaline phosphatase and NBT-BCIP were used to visualize the Igs for heavy and light chains as well as lower molecular weight fragments of these glycoproteins. Porphyromonas levii produced an immunoglobulin protease which readily cleaved bovine IgG into fragments, but did not act against IgM. Specifically, the enzyme may be a significant virulence factor as it may act to neutralize the antibodies demonstrated necessary for effective PMN-mediated phagocytosis.  (+info)

In vivo protection of Fusobacterium necrophorum from penicillin by Bacteroides fragilis. (2/297)

A mixed infection of Bacteroides fragilis and Fusobacterium necrophorum was resistant to treatment with penicillin even though a pure F. necrophorum infection could be successfully treated with penicillin. Since B. fragilis alone did not produce infection, these results indicate that B. fragilis can protect F. necrophorum from penicillin in vivo. The extent of protection afforded by a strain of B. fragilis was related to its level of resistance to penicillin. Only a few cells of B. fragilis were required in the initial bacterial injection. Moreover, protection was demonstrated when B. fragilis cells were injected as late as 24 h after the F. necrophorum cells. Protection of F. necrophorum from penicillin by B. fragilis was also demonstrated in vitro.  (+info)

Effect of virginiamycin on ruminal fermentation in cattle during adaptation to a high concentrate diet and during an induced acidosis. (3/297)

The objective of Exp. 1 was to compare the effects of virginiamycin (VM; 0, 175, or 250 mg x animal(-1) x d(-1)) and monensin/tylosin (MT; 250/ 90 mg x animal(-1) x d(-1)) on ruminal fermentation products and microbial populations in cattle during adaptation to an all-concentrate diet. Four ruminally cannulated, Holstein steers were used in a 4x4 Williams square design with 21-d periods. Steers were stepped up to an all-concentrate diet fed at 2.5% of BW once daily. Ruminal pH, protozoal counts, and NH3-N and VFA concentrations generally were unaffected by VM or MT. Mean counts of Lactobacillus and Streptococcus bovis were lower (P<.05) for VM-treated compared with control or MT-treated steers. Both VM and MT prevented the increase in Fusobacterium necrophorum counts associated with increasing intake of the high-concentrate diet observed in the control. The objective of Exp. 2 was to compare the effects of VM and MT on ruminal pH, L(+) lactate and VFA concentrations, and F. necrophorum numbers during carbohydrate overload. Six ruminally cannulated Holstein steers were assigned randomly to either the control, VM (175 mg/d), or MT (250 + 90 mg/d) treatments. Acidosis was induced with intraruminal administration of a slurry of ground corn and corn starch. The VM and MT premixes were added directly to the slurry before administration. Carbohydrate challenge induced acute ruminal acidosis (pH was 4.36 and L (+) lactate was 19.4 mM) in controls by 36 h. Compared with the controls, steers receiving VM or MT had higher (P<.05) ruminal pH, and the VM group had a lower (P<.05) L (+) lactate concentration. Fusobacterium necrophorum numbers initially increased in VM- and MT-administered steers. In the control steers, F. necrophorum was undetectable by 36 h. Virginiamycin seemed to control the growth of ruminal lactic acid-producing bacteria and, therefore, has the potential to moderate ruminal fermentation in situations that could lead to rapid production of lactic acid.  (+info)

Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. (4/297)

The human intestinal tract harbors a complex microbial ecosystem which plays a key role in nutrition and health. Although this microbiota has been studied in great detail by culture techniques, microscopic counts on human feces suggest that 60 to 80% of the observable bacteria cannot be cultivated. Using comparative analysis of cloned 16S rRNA gene (rDNA) sequences, we have investigated the bacterial diversity (both cultivated and noncultivated bacteria) within an adult-male fecal sample. The 284 clones obtained from 10-cycle PCR were classified into 82 molecular species (at least 98% similarity). Three phylogenetic groups contained 95% of the clones: the Bacteroides group, the Clostridium coccoides group, and the Clostridium leptum subgroup. The remaining clones were distributed among a variety of phylogenetic clusters. Only 24% of the molecular species recovered corresponded to described organisms (those whose sequences were available in public databases), and all of these were established members of the dominant human fecal flora (e.g., Bacteroides thetaiotaomicron, Fusobacterium prausnitzii, and Eubacterium rectale). However, the majority of generated rDNA sequences (76%) did not correspond to known organisms and clearly derived from hitherto unknown species within this human gut microflora.  (+info)

Phylogenetic analysis of Fusobacterium alocis and Fusobacterium sulci based on 16S rRNA gene sequences: proposal of Filifactor alocis (Cato, Moore and Moore) comb. nov. and Eubacterium sulci (Cato, Moore and Moore) comb. nov. (5/297)

Genes encoding the 16S rRNA of Fusobacterium alocis ATCC 35896T and Fusobacterium sulci ATCC 35585T were sequenced. These sequences did not have any affinity with the 16S rRNA gene sequences of members of the genus Fusobacterium. Fusobacterium alocis ATCC 35896T and Fusobacterium sulci ATCC 35585T belonged to Clostridium cluster XI; the species most closely related to these strains were Filifactor villosus NCTC 11220T and Eubacterium infirmum W1471, respectively. Two new combinations are proposed: Filifactor alocis (Cato, Moore and Moore) comb. nov. (type strain ATCC 35896T) and Eubacterium sulci (Cato, Moore and Moore) comb. nov. (type strain ATCC 35585T).  (+info)

Occurrence of the new tetracycline resistance gene tet(W) in bacteria from the human gut. (6/297)

Members of our group recently identified a new tetracycline resistance gene, tet(W), in three genera of rumen obligate anaerobes. Here, we show that tet(W) is also present in bacteria isolated from human feces. The tet(W) genes found in human Fusobacterium prausnitzii and Bifidobacterium longum isolates were more than 99.9% identical to those from a rumen isolate of Butyrivibrio fibrisolvens.  (+info)

Serological study of trichloroacetic acid extracts of Bacteroides fragilis. (7/297)

Immunodiffusion techniques were used on trichloroacetic acid extracts from 10 strains of Bacteroides fragilis in detecting precipitating antibodies against this species in immune rabbit sera. Species and even strain specificities were observed in these precipitin reactions. Multiple antigens were detected in the extracts from some strains, whereas only one precipitin band per extract developed during agar-gel diffusion tests of others. The antigen extracts were found to be both heat stable and resistant to hydrolysis by alpha-chymotrypsin. Four serological patterns were demonstrated in homologous and heterologous reactions with the B. fragilis. antigen-antibody systems used. The results showed that some strains were serologically distinct from others, indicating that the strains tested are of more than one serotype.  (+info)

Detection of tetQ and ermF antibiotic resistance genes in Prevotella and Porphyromonas isolates from clinical specimens and resident microbiota of humans. (8/297)

Gram-negative anaerobes belonging to the genera Fusobacterium, Prevotella and Porphyromonas were investigated for the presence of tetQ and ermF, which have been shown to be spread by conjugal elements. One hundred isolates from either sites of infection or various body sites in healthy subjects were studied. PCR was used to detect tetQ, and DNA-DNA hybridization studies on EcoRI chromosomal digests were undertaken to detect the presence of tetQ and ermF. Antibiotic sensitivity assays were performed on selected isolates to detect tetracycline, erythromycin and penicillin resistance. Twenty Fusobacterium isolates lacked tetQ, and were tetracycline sensitive. Twenty per cent of Prevotella spp. isolates both from clinical specimens and from healthy subjects were found to possess tetQ. Of 20 Porphyromonas isolates tested, one (Porphyromonas levii) from a case of bacterial vaginosis was shown to possess tetQ in the chromosome. The presence of tetQ was always associated with tetracycline resistance. Four isolates of Prevotella melaninogenica and one isolate of Prevotella were ermF-positive, although expression of erythromycin resistance was not consistently associated with detection of this gene. Antibiotic resistance phenotypes of Prevotella isolates were shown to be related to specific chromosomal restriction patterns by hybridization studies: tetracycline resistance and tetracycline/erythromycin resistance are conferred by Bacteroides tetracycline-resistant ERL elements, whereas the tetracycline/penicillin resistance phenotype could be due to spread of elements identified in Prevotella only. Tetracycline/erythromycin-resistant and tetracycline/erythromycin/penicillin-resistant P. melaninogenica isolates were found in this study. It appeared that the presence of tetQ and ermF in Bacteroides and Prevotella contributed to the persistence of antibiotic resistance isolates within the host and to potential spread to other organisms through conjugal elements.  (+info)