Transformation of the collateral vascular bundles into amphivasal vascular bundles in an Arabidopsis mutant. (25/9955)

Arabidopsis inflorescence stems develop a vascular pattern similar to that found in most dicots. The arrangement of vascular tissues within the bundle is collateral, and vascular bundles in the stele are arranged in a ring. Although auxin has been shown to be an inducer of vascular differentiation, little is known about the molecular mechanisms controlling vascular pattern formation. By screening ethyl methanesufonate-mutagenized populations of Arabidopsis, we have isolated an avb1 (amphivasal vascular bundle) mutant with a novel vascular pattern. Unlike the collateral vascular bundles seen in the wild-type stems, the vascular bundles in the avb1 stems were similar to amphivasal bundles, i.e. the xylem completely surrounded the phloem. Furthermore, branching vascular bundles in the avb1 stems abnormally penetrated into the pith, which resulted in a disruption in the ring-like arrangement of vascular bundles in the stele. The avb1 mutation did not affect leaf venation pattern and root vascular organization. Auxin polar transport assay indicated that the avb1 mutation did not disrupt the auxin polar transport activity in inflorescence stems. The avb1 mutation also exhibited pleiotropic phenotypes, including curled stems and extra cauline branches. Genetic analysis indicated that the avb1 mutation was monogenic and partially dominant. The avb1 locus was mapped to a region between markers mi69 and ASB2, which is covered by a yeast artificial chromosome clone, CIC9E2, on chromosome 5. Isolation of the avb1 mutant provides a novel means to study the evolutionary mechanisms controlling the arrangement of vascular tissues within the bundle, as well as the mechanisms controlling the arrangement of vascular bundles in the stele.  (+info)

Heterologous expression of Arabidopsis phytochrome B in transgenic potato influences photosynthetic performance and tuber development. (26/9955)

Transgenic potato (Solanum tuberosum) plants expressing Arabidopsis phytochrome B were characterized morphologically and physiologically under white light in a greenhouse to explore their potential for improved photosynthesis and higher tuber yields. As expected, overexpression of functional phytochrome B caused pleiotropic effects such as semidwarfism, decreased apical dominance, a higher number of smaller but thicker leaves, and increased pigmentation. Because of increased numbers of chloroplasts in elongated palisade cells, photosynthesis per leaf area and in each individual plant increased. In addition, photosynthesis was less sensitive to photoinactivation under prolonged light stress. The beginning of senescence was not delayed, but deceleration of chlorophyll degradation extended the lifetime of photosynthetically active plants. Both the higher photosynthetic performance and the longer lifespan of the transgenic plants allowed greater biomass production, resulting in extended underground organs with increased tuber yields.  (+info)

Gamma-radiation induces leaf trichome formation in Arabidopsis. (27/9955)

We observed induction of additional trichome formation on the adaxial surface of mature leaves of Arabidopsis after massive doses (1-3 kilograys) of gamma-radiation from cobalt-60. A typical increase in trichome number was observed in the seventh leaf when the full expansion of the fifth leaf was irradiated. Under normal growth conditions, trichome numbers on the adaxial surface of seventh leaf of the Arabidopsis ecotypes Columbia (Col) and Landsberg erecta (Ler) were 122.5 +/- 22.7 and 57.5 +/- 14.5, respectively. However, gamma-radiation induced additional trichome formation and the numbers rose to 207.9 +/- 43.7 and 95.0 +/- 27.1 in Col and Ler, respectively. In Col the shape of new trichomes was intact and their formation was spatially maintained at equal distances from other trichomes. In Ler trichome morphology was aberrant and the formation was relatively random. Treatment with antioxidants before gamma-irradiation suppressed the increase in trichome number, and treatment with methyl viologen and light induced small trichomes. These results suggest that gamma-radiation-induced trichome formation is mediated by active oxygen species generated by water radiolysis. gamma-Radiation-induced trichome formation was blocked in the trichome mutants ttg-1, gl1-1, and gl2-1. These results suggest that gamma-radiation-induced trichome formation is mediated by the normal trichome developmental pathway.  (+info)

Expression of 1-aminocyclopropane-1-carboxylate oxidase during leaf ontogeny in white clover. (28/9955)

We examined the expression of three distinct 1-aminocyclopropane-1-carboxylic acid oxidase genes during leaf ontogeny in white clover (Trifolium repens). Significant production of ethylene occurs at the apex, in newly initiated leaves, and in senescent leaf tissue. We used a combination of reverse transcriptase-polymerase chain reaction and 3'-rapid amplification of cDNA ends to identify three distinct DNA sequences designated TRACO1, TRACO2, and TRACO3, each with homology to 1-aminocyclopropane-1-carboxylic acid oxidase. Southern analysis confirmed that these sequences represent three distinct genes. Northern analysis revealed that TRACO1 is expressed specifically in the apex and TRACO2 is expressed in the apex and in developing and mature green leaves, with maximum expression in developing leaf tissue. The third gene, TRACO3, is expressed in senescent leaf tissue. Antibodies were raised to each gene product expressed in Escherichia coli, and western analysis showed that the TRACO1 antibody recognizes a protein of approximately 205 kD (as determined by gradient sodium dodecyl sulfate-polyacylamide gel electrophoresis) that is expressed preferentially in apical tissue. The TRACO2 antibody recognizes a protein of approximately 36.4 kD (as determined by gradient sodium dodecyl sulfate-polyacylamide gel electrophoresis) that is expressed in the apex and in developing and mature green leaves, with maximum expression in mature green tissue. No protein recognition by the TRACO3 antibody could be detected in senescent tissue or at any other stage of leaf development.  (+info)

Two SNF1-related protein kinases from spinach leaf phosphorylate and inactivate 3-hydroxy-3-methylglutaryl-coenzyme A reductase, nitrate reductase, and sucrose phosphate synthase in vitro. (29/9955)

We resolved from spinach (Spinacia oleracea) leaf extracts four Ca2+-independent protein kinase activities that phosphorylate the AMARAASAAALARRR (AMARA) and HMRSAMSGLHLVKRR (SAMS) peptides, originally designed as specific substrates for mammalian AMP-activated protein kinase and its yeast homolog, SNF1. The two major activities, HRK-A and HRK-C (3-hydroxy-3-methylglutaryl-coenzyme A reductase kinase A and C) were extensively purified and shown to be members of the plant SnRK1 (SNF1-related protein kinase 1) family using the following criteria: (a) They contain 58-kD polypeptides that cross-react with an antibody against a peptide sequence characteristic of the SnRK1 family; (b) they have similar native molecular masses and specificity for peptide substrates to mammalian AMP-activated protein kinase and the cauliflower homolog; (c) they are inactivated by homogeneous protein phosphatases and can be reactivated using the mammalian upstream kinase; and (d) they phosphorylate 3-hydroxy-3-methylglutaryl-coenzyme A reductase from Arabidopsis at the inactivating site, serine (Ser)-577. We propose that HRK-A and HRK-C represent either distinct SnRK1 isoforms or the same catalytic subunit complexed with different regulatory subunits. Both kinases also rapidly phosphorylate nitrate reductase purified from spinach, which is associated with inactivation of the enzyme that is observed only in the presence of 14-3-3 protein, a characteristic of phosphorylation at Ser-543. Both kinases also inactivate spinach sucrose phosphate synthase via phosphorylation at Ser-158. The SNF1-related kinases therefore potentially regulate several major biosynthetic pathways in plants: isoprenoid synthesis, sucrose synthesis, and nitrogen assimilation for the synthesis of amino acids and nucleotides.  (+info)

Foliar modifications induced by inhibition of polar transport of auxin. (30/9955)

The effects of auxin polar transport inhibitors, 9-hydroxy-fluorene-9-carboxylic acid (HFCA); 2, 3, 5-triiodobenzoic acid (TIBA) and trans-cinnamic acid (CA) on leaf pattern formation were investigated with shoots formed from cultured leaf explants of tobacco and cultured pedicel explants of Orychophragmus violaceus, and the seedlings of tobacco and Brassica chinensis. Although the effective concentration varies with the inhibitors used, all of the inhibitors induced the formation of trumpet-shaped and/or fused leaves. The frequency of trumpet-shaped leaf formation was related to the concentration of inhibitors in the medium. Histological observation of tobacco seedlings showed that there was only one main vascular bundle and several minor vascular bundles in normal leaves of the control, but there were several vascular bundles of more or less the same size in the trumpet-shaped leaves of treated ones. These results indicated that auxin polar transport played an important role on bilateral symmetry of leaf growth.  (+info)

The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. (31/9955)

The irregular xylem3 (irx3) mutant of Arabidopsis has a severe deficiency in secondary cell wall cellulose deposition that leads to collapsed xylem cells. The irx3 mutation has been mapped to the top arm of chromosome V near the marker nga106. Expressed sequence tag clone 75G11, which exhibits sequence similarity to cellulose synthase, was found to be tightly linked to irx3, and genomic clones containing the gene corresponding to clone 75G11 complemented the irx3 mutation. Thus, the IRX3 gene encodes a cellulose synthase component that is specifically required for the synthesis of cellulose in the secondary cell wall. The irx3 mutant allele contains a stop codon that truncates the gene product by 168 amino acids, suggesting that this allele is null. Furthermore, in contrast to radial swelling1 (rsw1) plants, irx3 plants show no increase in the accumulation of beta-1,4-linked glucose in the noncrystalline cell wall fraction. IRX3 and RSW1 fall into a distinct subgroup (Csa) of Arabidopsis genes showing homology to bacterial cellulose synthases.  (+info)

Antisense-mediated depletion of potato leaf omega3 fatty acid desaturase lowers linolenic acid content and reduces gene activation in response to wounding. (32/9955)

Fatty acid omega3 desaturases act on membrane lipids to catalyse the formation of trienoic fatty acids, the most abundant in plant tissues being alpha-linolenic acid. This fatty acid is a precursor of jasmonic acid, a plant growth regulator involved in the control of wound-induced gene activation in plants and in the induction of tuberization in potato. We isolated a potato omega3 desaturase cDNA, possibly encoding a plastidial isoform, and used it to investigate its expression pattern throughout plant development and in response to wounding. Plastidial omega3 desaturase gene transcripts accumulate rapidly upon wounding, preceding the jasmonate-dependent induction of the wound-responsive proteinase inhibitor II gene. We generated transgenic potato plants constitutively expressing an antisense RNA to this plastidial omega3 desaturase. Selected transgenic lines in which the cognate omega3 desaturase mRNA is largely depleted show a marked reduction, of up to 60%, in trienoic acids in leaves and tubers. In these lines, a corresponding reduction in jasmonate content and proteinase inhibitor II expression is observed upon wounding. Our results indicate that a reduction in omega3 desaturase mRNA levels compromises the wound-induced activation of proteinase inhibitor II, suggesting that wound-induced synthesis of linolenic acid is required for jasmonic acid production. The antisense-mediated depletion of fatty acid omega3 desaturases is a viable alternative for reducing trienoic fatty acid content in plant species in which a mutant screening approach is not applicable.  (+info)