Profile of organic acid concentrations in the digestive gland and hemolymph of Biomphalaria glabrata under estivation. (1/41)

Using high performance liquid chromatography (HPLC) analysis it was possible to determine simultaneously the concentration of organic acids (pyruvate, lactate, succinate, fumarate, malate, acetate, propionate, acetoacetate, and ss-hydroxybutyrate) in the digestive gland and the extracellular concentration of these same acids in the hemolymph of estivating Biomphalaria glabrata, the intermediate host of Schistosoma mansoni. After a 7 day period of estivation, there was a significant increase in the tissue levels of lactate, succinate, malate and acetate compared to non-estivating snails. After 14 days of estivation, the levels of lactate and acetate were also significantly elevated. The hemolymph concentrations of pyruvate and acetate increased significantly after 7 days and acetate concentrations continued to be significantly increased up to 14 days of estivation. The other organic acids studied, such as ketone body acetoacetate and ss-hydroxybutyrate or the volatile acid propionate, did not accumulate. Their tissue concentrations, however, increased on the 7th day of estivation and reached normal levels within two weeks of estivation for some of them. One should take into consideration how the reduction in metabolism can be handled under aerobic conditions, and what role anaerobic pathways may play in both energy formation and redox balance processes.  (+info)

Intrinsic metabolic depression in cells isolated from the hepatopancreas of estivating snails. (2/41)

Many animals across the phylogenetic scale are routinely capable of depressing their metabolic rate to 5-15% of that at rest, remaining in this state sometimes for years. However, despite its widespread occurrence, the biochemical processes associated with metabolic depression remain obscure. We demonstrate here the development of an isolated cell model for the study of metabolic depression. The isolated cells from the hepatopancreas (digestive gland) of the land snail (Helix aspersa) are oxygen conformers; i.e., their rate of respiration depends on pO(2). Cells isolated from estivating snails show a stable metabolic depression to 30% of control (despite the long and invasive process of cell isolation) when metabolic rate at the physiological pH and pO(2) of the hemolymph of estivating snails is compared with metabolic rate at the physiological pH and pO(2) of the hemolymph of control snails. When the extrinsic effects of pH and pO(2) are excluded, the intrinsic metabolic depression of the cells from estivating snails is still to below 50% of control snails. The in vitro effect of pO(2) on metabolic rate is independent of pH and state (awake or estivating), but the effects of pH and state significantly interact. This suggests that pH and state change affect metabolic depression by similar mechanisms but that the metabolic depression by hypoxia involves a separate mechanism.  (+info)

Processes contributing to metabolic depression in hepatopancreas cells from the snail Helix aspersa. (3/41)

Cells isolated from the hepatopancreas of the land snail Helix aspersa strongly depress respiration both immediately in response to lowered P(O2) (oxygen conformation) and, in the longer term, during aestivation. These phenomena were analysed by dividing cellular respiration into non-mitochondrial and mitochondrial respiration using the mitochondrial poisons myxothiazol, antimycin and azide. Non-mitochondrial respiration accounted for a surprisingly large proportion, 65+/-5 %, of cellular respiration in control cells at 70 % air saturation. Non-mitochondrial respiration decreased substantially as oxygen tension was lowered, but mitochondrial respiration did not, and the oxygen-conforming behaviour of the cells was due entirely to the oxygen-dependence of non-mitochondrial oxygen consumption. Non-mitochondrial respiration was still responsible for 45+/-2 % of cellular respiration at physiological oxygen tension. Mitochondrial respiration was further subdivided into respiration used to drive ATP turnover and respiration used to drive futile proton cycling across the mitochondrial inner membrane using the ATP synthase inhibitor oligomycin. At physiological oxygen tensions, 34+/-5 % of cellular respiration was used to drive ATP turnover and 22+/-4 % was used to drive proton cycling, echoing the metabolic inefficiency previously observed in liver cells from mammals, reptiles and amphibians. The respiration rate of hepatopancreas cells from aestivating snails was only 37 % of the control value. This was caused by proportional decreases in non-mitochondrial and mitochondrial respiration and in respiration to drive ATP turnover and to drive proton cycling. Thus, the fraction of cellular respiration devoted to different processes remained constant and the cellular energy balance was preserved in the hypometabolic state.  (+info)

Maintaining muscle mass during extended disuse: aestivating frogs as a model species. (4/41)

Prolonged muscle disuse in vertebrates can lead to a pathological change resulting in muscle wasting and a loss of muscle strength. In this paper, we review muscle disuse atrophy in the vertebrates and examine the factors that influence the magnitude of the atrophic response during extended periods of inactivity, both artificially imposed (e.g. limb immobilisation) and naturally occurring, such as the quiescence associated with dormancy (e.g. hibernation and aestivation). The severity of muscle atrophy is positively correlated with mass-specific metabolic rate, and the metabolic depression that occurs during dormancy would appear to have a protective role, reducing or preventing muscle atrophy despite periods of inactivity lasting 6-9 months. In the light of these findings, the role of reactive oxygen species and antioxidants during muscle disuse is emphasised.  (+info)

Hypometabolism, antioxidant defenses and free radical metabolism in the pulmonate land snail Helix aspersa. (5/41)

The aim of this work was to evaluate the effect of a cycle of estivation and awakening on free radical metabolism in selected organs of the land snail Helix aspersa. Estivation for 20 days induced a 4.9- and 1.8-fold increase in selenium-dependent glutathione peroxidase activity (Se-GPX) and in total glutathione levels (GSH-eq), respectively, in hepatopancreas when compared to activity in active animals 24 h after awakening. Foot muscle Se-GPX activity was also increased 3.9-fold during estivation, whereas GSH-eq did not vary. The activities of other antioxidant enzymes (catalase, superoxide dismutase, glutathione reductase and glutathione S-transferase) and glucose 6-phosphate dehydrogenase were unchanged in both organs. After 15 min of awakening, the glutathione disulphide (GSSG)/GSH-eq ratio increased significantly by 55% in hepatopancreas, slowly returning to the levels observed during estivation. The higher GSSG/GSH-eq ratio may be caused by increased formation of reactive oxygen species (ROS) during awakening. The levels of thiobarbituric acid reactive substances (TBARS) decreased from 49 to 30.7 nmol g(-1) wet mass in hepatopancreas after 5 min arousal and, after 30 min, TBARS rose significantly to 39.6 nmol g(-1) wet mass, gradually declining thereafter. The levels of lipid hydroperoxides in hepatopancreas and of carbonyl protein in foot muscle both decreased during awakening. The higher levels of products of free radical damage during estivation may have resulted from low levels of ROS formation associated with decreased rates of lipid hydroperoxide detoxification and oxidized protein turnover caused by metabolic depression. The regulation of the antioxidant system during hypometabolism may constitute a mechanism to minimize oxidative stress during cycles of estivation and awakening.  (+info)

Preservation of three-dimensional capillary structure in frog muscle during aestivation. (6/41)

In mammals, prolonged immobilization of the limbs can result in a loss of capillary tortuosity, resulting in skeletal muscle haemorrhaging if rapid remobilization is permitted. In this study, we examined the effect of 4 months' immobilization on semimembranosus capillary structure in the Green-striped burrowing frog, Cyclorana alboguttata. C. alboguttata routinely aestivates as part of a physiological strategy to avoid desiccation in semi-arid environments and, in this capacity, the hindlimbs of C. alboguttata are immobilized in a cocoon for months at a time. We found that 4 months' aestivation had no effect on three-dimensional capillary structure in the semimembranosus muscle and that capillary tortuosity is preserved in immobilized C. alboguttata. The preservation of capillary structure in the hindlimb muscles of C. alboguttata in part accounts for their remarkable ability to emerge with a fully competent locomotor system after prolonged immobilization.  (+info)

The role of eukaryotic initiation factor 2alpha during the metabolic depression associated with estivation. (7/41)

We have investigated the role of eukaryotic initiation factor 2alpha (eIF2alpha) in two estivating organisms previously shown to downregulate protein synthesis during metabolic depression, the land snail Helix aspersa Muller and the desert frog Neobatrachus sutor Main 1957. We have developed a method using a single antibody (which binds specifically to the phosphorylated, conserved phosphorylation region) by which the total levels of eIF2alpha and the ratio of phosphorylated eIF2alpha [eIF2alpha(P)] to total (phosphorylated and unphosphorylated) eIF2alpha can be determined. In H. aspersa, we have shown that the level of eIF2alpha mRNA expression is unchanged between the awake and estivating states. The amount of total eIF2alpha is the same in the estivating and awake states, and eIF2alpha(P) is undetectable and must represent < or =10% of total eIF2alpha in both states. Conversely, in N. sutor during estivation, the level of total eIF2alpha increases approximately 1.6-fold and the ratio of eIF2alpha(P)/eIF2alpha increases from 0.22+/-0.11 to 0.52+/-0.08, implicating eIF2alpha phosphorylation in the downregulation of protein synthesis during estivation in this animal. The differences in the amounts of eIF2alpha and the level of its phosphorylation between these two species also suggest possible differences either in the mechanism by which protein synthesis is downregulated during estivation or in the sensitivity of the initiation of translation to eIF2alpha(P) levels.  (+info)

Effect of aestivation on long bone mechanical properties in the green-striped burrowing frog, Cyclorana alboguttata. (8/41)

The green-striped burrowing frog, Cyclorana alboguttata, survives extended drought periods by burrowing underground and aestivating. These frogs remain immobile within cocoons of shed skin and mucus during aestivation and emerge from their burrows upon heavy rains to feed and reproduce. Extended periods of immobilisation in mammals typically result in bone remodelling and a decrease in bone strength. We examined the effect of aestivation and, hence, prolonged immobilisation on cross-sectional area, histology and bending strength in the femur and tibiofibula of C. alboguttata. Frogs were aestivated in soil for three and nine months and were compared with control animals that remained active, were fed and had a continual supply of water. Compared with the controls, long bone size, anatomy and bending strength remained unchanged, indicating an absence of disuse osteoporosis. This preservation of bone tissue properties enables C. alboguttata to compress the active portions of their life history into unpredictable windows of opportunity, whenever heavy rains occur.  (+info)