Stomatocytosis is absent in "stomatin"-deficient murine red blood cells. (1/429)

To examine the relationship between erythrocyte membrane protein 7. 2b deficiency and the hemolytic anemia of human hereditary stomatocytosis, we created 7.2b knock-out mice by standard gene targeting approaches. Immunoblots showed that homozygous knock-out mice completely lacked erythrocyte protein 7.2b. Despite the absence of protein 7.2b, there was no hemolytic anemia and mouse red blood cells (RBCs) were normal in morphology, cell indices, hydration status, monovalent cation content, and ability to translocate lipids. The absence of the phenotype of hereditary stomatocytosis implies that protein 7.2b deficiency plays no direct role in the etiology of this disorder and casts doubt on the previously proposed role of this protein as a mediator of cation transport in RBC.  (+info)

Plasmodium falciparum infection: influence on hemoglobin levels in alpha-thalassemia and microcytosis. (2/429)

Plasmodium falciparum malaria, alpha-thalassemia, and anemia are frequent in African children. In 494 nonhospitalized Nigerian children, P. falciparum infection rates, alpha-globin genotypes, and hematologic parameters were determined. P. falciparum infection was observed in 78% of the children. The gene frequency of alpha-thalassemia was 0.28. Infection rates and parasitemia were similar for the 3 alpha-globin genotypes. In contrast to nonthalassemic and heterozygous persons, infection in children with homozygous alpha-thalassemia did not influence hemoglobin values. Because microcytosis and anemia are common features of alpha-thalassemia, their significance in P. falciparum infection was examined. Microcytosis was significantly associated with protection from hemoglobin decrease due to P. falciparum. Moreover, the rate of infection was lower in microcytic than in normocytic anemia.  (+info)

Dimethyl adipimidate: a new antisickling agent. (3/429)

A new approach to the prevention of sickling in vitro by use of the bifunctional crosslinking reagent, dimethyl adipimidate, is described. Prior treatment of sickle erythrocytes with dimethyl adipimidate will inhibit sickling in completely deoxygenated erythrocytes. Treated erythrocytes do not demonstrate the potassium loss and viscosity increase that usually accompany sickling. The oxygen affinity of hemoglobin in these cells is increased independently from changes in the concentration of 2,3-diphosphoglycerate. The hemoglobin obtained from treated erythrocytes contains a high-molecular-weight component as well as additional positively charged components. The relative degree to which chemical modification and/or crosslinking is an essential part of the antisickling properties of the material is not known.  (+info)

Volume control in sickle cells is facilitated by the novel anion conductance inhibitor NS1652. (4/429)

A low cation conductance and a high anion conductance are characteristic of normal erythrocytes. In sickle cell anemia, the polymerization of hemoglobin S (HbS) under conditions of low oxygen tension is preceded by an increase in cation conductance. This increase in conductance is mediated in part through Ca(++)-activated K(+) channels. A net efflux of potassium chloride (KCl) leads to a decrease in intracellular volume, which in turn increases the rate of HbS polymerization. Treatments minimizing the passive transport of ions and solvent to prevent such volume depletion might include inhibitors targeting either the Ca(++)-activated K(+) channel or the anion conductance. NS1652 is an anion conductance inhibitor that has recently been developed. In vitro application of this compound lowers the net KCl loss from deoxygenated sickle cells from about 12 mmol/L cells/h to about 4 mmol/L cells/h, a value similar to that observed in oxygenated cells. Experiments performed in mice demonstrate that NS1652 is well tolerated and decreases red cell anion conductance in vivo. (Blood. 2000;95:1842-1848)  (+info)

Dichloromethane as an antisickling agent in sickle cell hemoglobin. (5/429)

Microscopic studies of red cells from homozygous sickle cell patients show that dichloromethane does prevent sickle cell formation in vitro and does cause reversion of sickled cells to normal after exposure to dichloromethane. X-ray structural analysis of human deoxyhemoglobin crystals exposed to dichloromethane shows four unique binding sites. Arguments are presented to suggest that the binding site close to tryptophan 14alpha prevents the formation of helical polymers, i.e., prevent sickling.  (+info)

Crystal structure of decameric 2-Cys peroxiredoxin from human erythrocytes at 1.7 A resolution. (6/429)

BACKGROUND: The peroxiredoxins (Prxs) are an emerging family of multifunctional enzymes that exhibit peroxidase activity in vitro, and in vivo participate in a range of cellular processes known to be sensitive to reactive oxygen species. Thioredoxin peroxidase B (TPx-B), a 2-Cys type II Prx from erythrocytes, promotes potassium efflux and down-regulates apoptosis and the recruitment of monocytes by endothelial tissue. RESULTS: The crystal structure of human decameric TPx-B purified from erythrocytes has been determined to 1.7 [corrected)] A resolution. The structure is a toroid comprising five dimers linked end-on through predominantly hydrophobic interactions, and is proposed to represent an intermediate in the in vivo reaction cycle. In the crystal structure, Cys51, the site of peroxide reduction, is oxidised to cysteine sulphinic acid. The residue Cys172, lies approximately 10 A away from Cys51 [corrected]. CONCLUSIONS: The oxidation of Cys51 appears to have trapped the structure into a stable decamer, as confirmed by sedimentation analysis. A comparison with two previously reported dimeric Prx structures reveals that the catalytic cycle of 2-Cys Prx requires significant conformational changes that include the unwinding of the active-site helix and the movement of four loops. It is proposed that the stable decamer forms in vivo under conditions of oxidative stress. Similar decameric structures of TPx-B have been observed by electron microscopy, which show the protein associated with the erythrocyte membrane.  (+info)

Pleiotropic syndrome of dehydrated hereditary stomatocytosis, pseudohyperkalemia, and perinatal edema maps to 16q23-q24. (7/429)

Dehydrated hereditary stomatocytosis (DHS) is a rare genetic disorder of red cell permeability to cations, leading to a well-compensated hemolytic anemia. DHS was shown previously to be associated in some families with a particular form of perinatal edema, which resolves in the weeks following birth and, in addition, with pseudohyperkalemia in one kindred. The latter condition was hitherto regarded as the separate entity, "familial pseudohyperkalemia." DHS and familial pseudohyperkalemia are thought to stem from the same gene, mapping to 16q23-q24. This study screened 8 French and 2 American families with DHS. DHS appeared to be part of a pleiotropic syndrome in some families: DHS + perinatal edema, DHS + pseudohyperkalemia, or DHS + perinatal edema + pseudohyperkalemia. If adequately attended to, the perinatal edema resolved spontaneously after birth. Logistic regression showed that increased mean corpuscular volume and mean corpuscular hemoglobin concentration were the parameters best related to DHS. In patients in whom cation fluxes were investigated, the temperature dependence of the monovalent cation leak exhibited comparable curves. Specific recombination events consistently suggested that the responsible gene lies between markers D16S402 and D16S3037 (16q23-q24). The 95% confidence limits (Z(max) >/= 3.02) spanned almost the complete 9-cM interval between these 2 markers.  (+info)

ICL670A: a new synthetic oral chelator: evaluation in hypertransfused rats with selective radioiron probes of hepatocellular and reticuloendothelial iron stores and in iron-loaded rat heart cells in culture. (8/429)

ICL670A (formerly CGP 72 670) or 4-[3,5-bis-(hydroxyphenyl)-1,2,4-triazol-1-yl]- benzoic acid is a tridentate iron-selective synthetic chelator of the bis-hydroxyphenyl-triazole class of compounds. The present studies used selective radioiron probes of hepatocellular and reticuloendothelial (RE) iron stores in hypertransfused rats and iron-loaded heart cells to define the source of iron chelated in vivo by ICL670A and its mode of excretion, to examine its ability to remove iron directly from iron-loaded myocardial cells, and to examine its ability to interact with other chelators through a possible additive or synergistic effect. Results indicate that ICL670A given orally is 4 to 5 times more effective than parenteral deferoxamine (DFO) in promoting the excretion of chelatable iron from hepatocellular iron stores. The pattern of iron excretion produced by ICL670A is quite different from that of DFO and all iron excretion is restricted to the bile regardless of whether it is derived from RE or hepatocellular iron stores. Studies in heart cell cultures have shown a favorable interaction between DFO and ICL670A manifested in improved chelating efficiency of ICL670A, which is most probably explained by an exchange of chelated iron between ICL670A and DFO. These unique chelating properties of ICL670A may have practical implications for current efforts to design better therapeutic strategies for the management of transfusional iron overload.  (+info)