Crystal structure of an MHC class I presented glycopeptide that generates carbohydrate-specific CTL. (1/4245)

T cell receptor (TCR) recognition of nonpeptidic and modified peptide antigens has been recently uncovered but is still poorly understood. Immunization with an H-2Kb-restricted glycopeptide RGY8-6H-Gal2 generates a population of cytotoxic T cells that express both alpha/beta TCR, specific for glycopeptide, and gamma/delta TCR, specific for the disaccharide, even on glycolipids. The crystal structure of Kb/RGY8-6H-Gal2 now demonstrates that the peptide and H-2Kb structures are unaffected by the peptide glycosylation, but the central region of the putative TCR binding site is dominated by the extensive exposure of the tethered carbohydrate. These features of the Kb/RGY8-6H-Gal2 structure are consistent with the individual ligand binding preferences identified for the alpha/beta and gamma/delta TCRs and thus explain the generation of a carbohydrate-specific T cell response.  (+info)

Crystal structures of two H-2Db/glycopeptide complexes suggest a molecular basis for CTL cross-reactivity. (2/4245)

Two synthetic O-GlcNAc-bearing peptides that elicit H-2Db-restricted glycopeptide-specific cytotoxic T cells (CTL) have been shown to display nonreciprocal patterns of cross-reactivity. Here, we present the crystal structures of the H-2Db glycopeptide complexes to 2.85 A resolution or better. In both cases, the glycan is solvent exposed and available for direct recognition by the T cell receptor (TCR). We have modeled the complex formed between the MHC-glycopeptide complexes and their respective TCRs, showing that a single saccharide residue can be accommodated in the standard TCR-MHC geometry. The models also reveal a possible molecular basis for the observed cross-reactivity patterns of the CTL clones, which appear to be influenced by the length of the CDR3 loop and the nature of the immunizing ligand.  (+info)

Phenotypic and functional characterization of CD8(+) T cell clones specific for a mouse cytomegalovirus epitope. (3/4245)

A series of CD8(+) T cell clones, specific for the IE1 epitope YPHFMPTNL, of the immediate-early protein 1 of the murine cytomegalovirus (MCMV) were generated in order to determine their protective activity against this infection and correlate their phenotypic markers with antiviral activity. We found that the adoptive transfer of three of these anti-MCMV CD8(+) T cell clones into irradiated naive mice resulted in protection against challenge, while another CD8(+) T cell clone, of the same specificity, failed to confer protection. The clones that conferred protection against lethal challenge reduced greatly viral replication in the lung and other organs of the mice. Using one of the protective anti-MCMV CD8(+) T cell clones we found that in order to be fully protective the cells had to be transferred to recipient mice no later than 1 day after MCMV challenge. The adoptive transfer of these CD8(+) T cell clones also protected CD4(+) T-cell-depleted mice. Phenotypic characterization of the anti-MCMV clones revealed that the nonprotective clone expressed very low levels of CD8 molecules and produced only small amounts of TNF-alpha upon antigenic stimulation. Most importantly, our current study demonstrates that this MHC class I-restricted IE1 epitope of MCMV is efficiently presented to CD8(+) T cell clones in vivo and further strengthens the possibility of the potential use of CD8(+) T cell clones as immunotherapeutic tools against cytomegalovirus-induced disease.  (+info)

Immune response to the immunodominant epitope of mouse hepatitis virus is polyclonal, but functionally monospecific in C57Bl/6 mice. (4/4245)

Mutations in an immunodominant CD8 CTL epitope (S-510-518) are selected in mice persistently infected with the neurotropic JHM strain of mouse hepatitis virus. These mutations abrogate recognition by T cells harvested from the infected CNS in direct ex vivo cytotoxicity assays. Previous reports have suggested that, in general, an oligoclonal, monospecific T cell response contributes to the selection of CTL escape mutants. Herein, we show that, in MHV-JHM-infected mice, the CD8 T cell response after intraperitoneal infection is polyclonal and diverse. This diverse response was shown to include both polyclonal and oligoclonal components. The polyclonal data were shown to fit a logarithmic distribution. With regard to specificity, we used a panel of peptide analogues of epitope S-510-518 and spleen-derived CD8 T cell lines to determine why only a subset of possible mutations was selected in persistently infected mice. At a given position in the epitope, the mutations identified in in vivo isolates were among those that resulted in the greatest loss of recognition. However, not all such mutations were selected, suggesting that additional factors must contribute to selection in vivo. By extrapolation of these results to the persistently infected CNS, they suggest that the selection of CTL escape mutants requires the presence of a monospecific T cell response but also show that this response need not be oligoclonal.  (+info)

Induction of CD8+ T cell-mediated protective immunity against Trypanosoma cruzi. (5/4245)

Trypanosoma cruzi was transformed with the Plasmodium yoelii gene encoding the circum-sporozoite (CS) protein, which contains the well-characterized CD8+ T cell epitope, SYVPSAEQI. In vivo and in vitro assays indicated that cells infected with the transformed T. cruzi could process and present this malaria parasite-derived class I MHC-restricted epitope. Immunization of mice with recombinant influenza and vaccinia viruses expressing the SYVPSAEQI epitope induced a large number of specific CD8+ T cells that strongly suppressed parasitemia and conferred complete protection against the acute T. cruzi lethal infection. CD8+ T cells mediated this immunity as indicated by the unrelenting parasitemia and high mortality observed in immunized mice treated with anti-CD8 antibody. This study demonstrated, for the first time, that vaccination of mice with vectors designed to induce CD8+ T cells is effective against T. cruzi infection.  (+info)

In vivo and in vitro activation of T cells after administration of Ag-negative heat shock proteins. (6/4245)

Heat shock proteins (HSP) Hsp70 and gp96 prime class I-restricted cytotoxic T cells against Ags present in the cells from which they were isolated. The immunization capacity of HSPs is believed to rely on their ability to bind antigenic peptides. In this study, we employed the well-established OVA and beta-galactosidase (beta-gal) antigenic model systems. We show that in vitro long-term established OVA and beta-gal-specific CTL clones release TNF-alpha and IFN-gamma when incubated with Ag-negative Hsp70 and gp96. In the absence of antigenic peptides, HSP-mediated secretion of TNF-alpha and IFN-gamma requires cell contact of the APC with the T cell but is not MHC-I restricted. Moreover, Hsp70 molecules purified from Ag-negative tissue, e.g., negative for antigenic peptide, are able to activate T cells in vivo, leading to significant higher frequencies in OVA-specific CD8+ T cells. In unprimed animals, these T cells lyse OVA-transfected cell lines and produce TNF-alpha and IFN-gamma after Ag stimulus. Taken together our data show that, besides the well-established HSP/peptide-specific CTL induction and activation, a second mechanism exists by which Hsp70 and gp96 molecules activate T cells in vivo and in vitro.  (+info)

Fas-mediated suicide of tumor-reactive T cells following activation by specific tumor: selective rescue by caspase inhibition. (7/4245)

CD8+ T lymphocytes that specifically recognize tumor cells can be isolated and expanded ex vivo. While the lytic properties of these cells have been well described, their fate upon encounter with cognate tumor is not known. We performed reverse 51Cr release assays in which the lymphocyte effectors rather than the tumor cell targets were radioactively labeled. We found that melanoma tumor cells caused the apoptotic death of tumor-specific T cells only upon specific MHC class I-restricted recognition. This death was entirely blockable by the addition of an Ab directed against the Fas death receptor (APO-1, CD95). Contrary to the prevailing view that tumor cells cause the death of anti-tumor T cells by expressing Fas ligand (FasL), our data suggested that FasL was instead expressed by T lymphocytes upon activation. While the tumor cells did not express FasL by any measure (including RT-PCR), functional FasL (as well as FasL mRNA) was consistently found on activated anti-tumor T cells. We could successfully block the activation-induced cell death with z-VAD-fmk, a tripeptide inhibitor of IL-1 beta-converting enzyme homologues, or with anti-Fas mAbs. Most importantly, these interventions did not inhibit T cell recognition as measured by IFN-gamma release, nor did they adversely affect the specific lysis of tumor cell targets. These results imply that Fas-mediated activation-induced cell death could be a limiting factor in the in vivo efficacy of adoptive transfer of class I-restricted CD8+ T cells and provide a means of potentially enhancing their growth in vitro as well as their function in vivo.  (+info)

Enumeration of antigen-presenting cells in mice infected with Sendai virus. (8/4245)

Substantial progress has been made in understanding Ag presentation to T cells; however, relatively little is known about the location and frequency of cells presenting viral Ags during a viral infection. Here, we took advantage of a highly sensitive system using lacZ-inducible T cell hybridomas to enumerate APCs during the course of respiratory Sendai virus infection in mice. Using lacZ-inducible T cell hybridomas specific for the immunodominant hemagglutinin-neuraminidase HN421-436/I-Ab and nucleoprotein NP324-332/Kb epitopes, we detected APCs in draining mediastinal lymph nodes (MLNs), in cervical lymph nodes, and also in the spleen. HN421-436/I-Ab- and NP324-332/Kb-presenting cells were readily detectable between days 3 and 9 postinfection, with more APCs present in the MLN than in the cervical lymph nodes. Interestingly, no infectious virus was detected in lymphoid tissue beyond day 6, suggesting that a depot of noninfectious viral Ag survives, in some form, for 2-3 days after viral clearance. Fractionation of the MLN demonstrated that APC frequency was enriched in dendritic cells and macrophages but depleted in the B cell population, suggesting that B cells do not form a large population of APCs during the primary response to this virus.  (+info)