The incorporation of 5-iodo-2'-deoxyuridine into the DNA of HeLa cells and the induction of alkaline phosphatase activity. (1/9730)

Inhibition of DNA synthesis during the period of exposure of HeLa cells to 5-iodo-2'-deoxyuridine (IUdR) inhibited the induction of alkaline phosphatase activity. This finding, taken together with previous findings that IUdR did not induce alkaline phosphatase activity in the presence of 2-fold molar excess thymidinemonstrated that IUdR incorporation into DNA is correlated with the increase in alkaline phosphatase activity. With the exception of an interim period described in the text, induction of alkaline phosphatase activity was linearly related to medium concentrations of IUdR of up to at least 3 muM. However, the extent of IUdR substitution in DNA did not appear to be related to the degree of enzyme induction. Alkaline phosphatase activity continued to increase at medium concentrations of IUdR from 1 to 3 muM, while little further substitution of DNA occurred.  (+info)

Action of partially thiolated polynucleotides on the DNA polymerase alpha from regenerating rat liver. (2/9730)

The effects of partially thiolated polynucleotides on the DNA polymerase alpha from regenerating rat liver were investigated. The enzyme was isolated from the nuclear fraction essentially according to the method of Baril et al.; it was characterized as the alpha polymerase on the basis of its response to synthetic templates and its inhibition with N-ethylmaleimide. Although polycytidylic acid had no effect on the DNA polymerase alpha either as a template or as an inhibitor, partially thiolated polycytidylic acid (MPC) was found to be a potent inhibitor, its activity being directly related to its extent of thiolation (percentage of 5-mercaptocytidylate units in the polymer). In comparison, the DNA polymerase beta which was purified from normal rat liver nuclear fraction, was much less sensitive to inhibition by MPC. Analysis of the inhibition of the alpha polymerase by the method of Lineweaver and Burk showed that the inhibitory action of MPC was competitively reversible with the DNA template, but the binding of the 7.2%-thiolated MPC to the enzyme was much stronger than that of the template (Ki/Km less than 0.03). Polyuridylic acid as such showed some inhibitory activity which increased on partial thiolation, but the 8.4%-thiolated polyuridylic acid was less active than the 7.2% MPC. When MPC was annealed with polyinosinic acid, it lost 80% of its inhibitory activity in the double-stranded configuration. However, 1 to 2%-thiolated DNA isolates were significantly more potent inhibitors than were comparable (1.2%-thiolated) MPC and showed competitive reversibility with the unmodified (but "activated") DNA template. These results indicate that the inhibitory activities of partially thiolated polynucleotides depend not only on the percentage of 5-mercapto groups but also on the configuration, base composition, and other specific structural properties.  (+info)

Blood thymidine level and iododeoxyuridine incorporation and reutilization in DNA in mice given long-acting thymidine pellets. (3/9730)

A long-acting thymidine pellet consisting of 190 mg of cholesterol and 60 mg of thymidine has been developed for the study of thymidine metabolism and reutilization in vivo. Implantation of such a pellet s.c. in adult mice will maintain the blood plasma concentration of thymidine at levels between 40 and 8 X 10(-6) M, which are from 36 to 7 times those of normal mice, for periods up to 48 hr. During this period, in vivo uptake and reutilization of [125I]iododeoxyuridine, a thymidine analog, into intestinal and tumor DNA were almost completely suppressed. While iododeoxyuridine reutilization is not large in normal proliferative tissue even in the absence of pellet implants, reutilization of over 30% was measured in large, rapidly growing ascites tumors. The inhibition of iododeoxyuridine incorporation by elevated thymidine blood levels is directly proportional to serum concentration. This appears to be due to a thymidine pool in rapid equilibrium with blood thymidine. This pool is at least 10 times larger than the 4-nmole pool of extracellular thymidine.  (+info)

The effects of estrogens and antiestrogens on hormone-responsive human breast cancer in long-term tissue culture. (4/9730)

We have established or characterized six lines of human breast cancer maintained in long-term tissue culture for at least 1 year and have examined these lines for estrogen responsiveness. One of these cell lines, MCF-7, shows marked stimulation of macromolecular synthesis and cell division with physiological concentrations of estradiol. Antiestrogens are strongly inhibitory, and at concentrations greater than 3 X 10(-7) M they kill cells. Antiestrogen effects are prevented by simultaneous treatment with estradiol or reversed by addition of estradiol to cells incubated in antiestrogen. Responsive cell lines contain high-affinity specific estradiol receptors. Antiestrogens compete with estradiol for these receptors but have a lower apparent affinity for the receptor than estrogens. Stimulation of cells by estrogens is biphasic, with inhibition and cell death at concentrations of 17beta-estradiol or diethylstilbestrol exceeding 10(-7) M. Killing by high concentrations of estrogen is probably a nonspecific effect in that we observe this response with 17alpha-estradiol at equivalent concentrations and in the otherwise unresponsive cells that contain no estrogen receptor sites.  (+info)

The effects of glucocorticoids and progesterone on hormone-responsive human breast cancer in long-term tissue culture. (5/9730)

Glucocorticoids, at physiological concentration, inhibit cell division and thymidine incorporation in three lines of human breast cancer maintained in long-term tissue culture. At steroid concentrations sufficient to inhibit thymidine incorporation 50%, little or no effect is seen on protein synthesis 48 hr after hormone addition. All three of these lines are shown to have glucocorticoid receptors demonstrable by competitive protein binding assays. Receptors are extensively characterized in one line by sucrose density gradient analysis and binding specificity studies. Good correlation between receptor-binding specificity and biological activity is found except for progesterone, which binds to glucocorticoid receptor but is noninhibitory. Cross-competition and quantification studies demonstrate a separate receptor for progesterone. This receptor has limited binding specificities restricted largely to progestational agents, whereas the glucocorticoid receptor bound both glucocorticoids and progesterone. Two other human breast cancer lines neither contain glucocorticoid receptor nor are inhibited by glucocorticoids. It is concluded that in some cases glucocorticoids can directly limit growth in human breast cancer in vitro without requiring alterations in other trophic hormones.  (+info)

The effects of androgens and antiandrogens on hormone-responsive human breast cancer in long-term tissue culture. (6/9730)

We have examined five human breast cancer cell lines in continuous tissue culture for androgen responsiveness. One of these cell lines shows a 2- to 4-fold stimulation of thymidine incorporation into DNA, apparent as early as 10 hr following androgen addition to cells incubated in serum-free medium. This stimulation is accompanied by an acceleration in cell replication. Antiandrogens [cyproterone acetate (6-chloro-17alpha-acetate-1,2alpha-methylene-4,6-pregnadiene-3,20-dione) and R2956 (17beta-hydroxy-2,2,17alpha-trimethoxyestra-4,9,11-triene-1-one)] inhibit both protein and DNA synthesis below control levels and block androgen-mediated stimulation. Prolonged incubation (greater than 72 hr) in antiandrogen is lethal. The MCF- cell line contains high-affinity receptors for androgenic steroids demonstrable by sucrose density gradients and competitive protein binding analysis. By cross-competition studies, androgen receptors are distinguishable from estrogen receptors also found in this cell line. Concentrations of steroid that saturate androgen receptor sites in vitro are about 1000 times lower than concentrations that maximally stimulate the cells. Changes in quantity and affinity of androgen binding to intact cells at 37 degrees as compared with usual binding techniques using cytosol preparation at 0 degrees do not explain this difference between dissociation of binding and effect. However, this difference can be explained by conversion of [3H]-5alpha-dihydrotestosterone to 5alpha-androstanediol and more polar metabolites at 37 degrees. An examination of incubation media, cytoplasmic extracts and crude nuclear pellets reveals probable conversion of [3H]testosterone to [3H]-5alpha-dihydrotestosterone. Our data provide compelling evidence that some human breast cancer, at least in vitro, may be androgen dependent.  (+info)

Tissue pharmacokinetics, inhibition of DNA synthesis and tumor cell kill after high-dose methotrexate in murine tumor models. (7/9730)

In Sarcoma 180 and L1210 ascites tumor models, the initial rate of methotrexate accumulation in tumor cells in the peritoneal cavity and in small intestine (intracellularly) after s.c. doses up to 800 mg/kg, showed saturation kinetics. These results and the fact that initial uptake in these tissues within this dosage range was inhibited to the expected relative extent by the simultaneous administration of leucovorin suggest that carrier mediation and not passive diffusion is the major route of drug entry at these extremely high doses. Maximum accumulation of intracellular drug occurred within 2 hr and reached much higher levels in small intestine than in tumor cells at the higher dosages. At a 3-mg/kg dose of methotrexate s.c., intracellular exchangeable drug levels persisted more than four times longer in L1210 cells than in small intestine, but differences in persistence (L1210 cell versus gut) diminished markedly with increasing dosage. At 96 mg/kg, the difference in persistence was less than 2-fold. In small intestine and L1210 cells, theduration of inhibition of DNA synthesis at different dosages correlated with the extent to which exchangeable drug was retained. Toxic deaths occurred when inhibition in small intestine lasted longer than 25 to 30 hr. Recovery of synthesis in small intestine and L1210 cells occurred synchronously and only below dosages of 400 mg/kg. Within 24 hr after dosages of greater than 24 mg/kg, the rate of tumor cell loss increased to a point characterized by a single exponential (t1/2=8.5 hr). The total cell loss, but not the rate of cell loss, was dose dependent.  (+info)

Ambiguity of the thymidine index. (8/9730)

The observed thymidine indices of seven experimental tumor lines are compared as a function of duration of emulsion exposure. The effects of dose level of tritiated thymidine and background threshold are also evaluated. The results indicate that an arbitrary high background threshold discriminates against "lightly" labeled cells at short periods of exposure but that the chosen threshold becomes less critical with longer exposure. The observed thymidine index increases with increasing duration of emulsion exposure but appears to approach a plateau for all tumor systems. The "thymidine index curves" are significantly different for each tumor. There is an inverse relationship between the dose of tritiated thymidine and the duration of exposure required to recognize the same fraction of cells as labeled in a given tumor. Similar experimental conditions do not necessarily guarantee a valid basis for comparison of observed thymidine indices among tumors.  (+info)