Mhr1p-dependent concatemeric mitochondrial DNA formation for generating yeast mitochondrial homoplasmic cells. (1/27)

Mitochondria carry many copies of mitochondrial DNA (mtDNA), but mt-alleles quickly segregate during mitotic growth through unknown mechanisms. Consequently, all mtDNA copies are often genetically homogeneous within each individual ("homoplasmic"). Our previous study suggested that tandem multimers ("concatemers") formed mainly by the Mhr1p (a yeast nuclear gene-encoded mtDNA-recombination protein)-dependent pathway are required for mtDNA partitioning into buds with concomitant monomerization. The transmission of a few randomly selected clones (as concatemers) of mtDNA into buds is a possible mechanism to establish homoplasmy. The current study provides evidence for this hypothesis as follows: the overexpression of MHR1 accelerates mt-allele-segregation in growing heteroplasmic zygotes, and mhr1-1 (recombination-deficient) causes its delay. The mt-allele-segregation rate correlates with the abundance of concatemers, which depends on Mhr1p. In G1-arrested cells, concatemeric mtDNA was labeled by [14C]thymidine at a much higher density than monomers, indicating concatemers as the immediate products of mtDNA replication, most likely in a rolling circle mode. After releasing the G1 arrest in the absence of [14C]thymidine, the monomers as the major species in growing buds of dividing cells bear a similar density of 14C as the concatemers in the mother cells, indicating that the concatemers in mother cells are the precursors of the monomers in buds.  (+info)

Structure-specific binding of the proto-oncogene protein DEK to DNA. (2/27)

The ubiquitous proto-oncogene protein DEK has been found to be associated with chromatin during the entire cell cycle. It changes the topology of DNA in chromatin and protein-free DNA through the introduction of positive supercoils. The sequence and structure specificities of DEK-DNA interactions are not completely understood. The binding of DEK to DNA is not sequence specific, but we describe here that DEK has a clear preference for supercoiled and four-way junction DNA. In the presence of topoisomerase II, DEK stimulates intermolecular catenation of circular DNA molecules. DEK also increases the probability of intermolecular ligation of linear DNA molecules by DNA ligase. These binding properties qualify DEK as an architectural protein.  (+info)

Genomic representations using concatenates of Type IIB restriction endonuclease digestion fragments. (3/27)

We have developed a method for genomic representation using Type IIB restriction endonucleases. Representation by concatenation of restriction digests, or RECORD, is an approach to sample the fragments generated by cleavage with these enzymes. Here, we show that the RECORD libraries may be used for digital karyotyping and for pathogen identification by computational subtraction.  (+info)

Incidence of "quasi-ditags" in catalogs generated by Serial Analysis of Gene Expression (SAGE). (4/27)

BACKGROUND: Serial Analysis of Gene Expression (SAGE) is a functional genomic technique that quantitatively analyzes the cellular transcriptome. The analysis of SAGE libraries relies on the identification of ditags from sequencing files; however, the software used to examine SAGE libraries cannot distinguish between authentic versus false ditags ("quasi-ditags"). RESULTS: We provide examples of quasi-ditags that originate from cloning and sequencing artifacts (i.e. genomic contamination or random combinations of nucleotides) that are included in SAGE libraries. We have employed a mathematical model to predict the frequency of quasi-ditags in random nucleotide sequences, and our data show that clones containing less than or equal to 2 ditags (which include chromosomal cloning artifacts) should be excluded from the analysis of SAGE catalogs. CONCLUSIONS: Cloning and sequencing artifacts contaminating SAGE libraries could be eliminated using simple pre-screening procedure to increase the reliability of the data.  (+info)

The efficiency of different search strategies in estimating parsimony jackknife, bootstrap, and Bremer support. (5/27)

BACKGROUND: For parsimony analyses, the most common way to estimate confidence is by resampling plans (nonparametric bootstrap, jackknife), and Bremer support (Decay indices). The recent literature reveals that parameter settings that are quite commonly employed are not those that are recommended by theoretical considerations and by previous empirical studies. The optimal search strategy to be applied during resampling was previously addressed solely via standard search strategies available in PAUP*. The question of a compromise between search extensiveness and improved support accuracy for Bremer support received even less attention. A set of experiments was conducted on different datasets to find an empirical cut-off point at which increased search extensiveness does not significantly change Bremer support and jackknife or bootstrap proportions any more. RESULTS: For the number of replicates needed for accurate estimates of support in resampling plans, a diagram is provided that helps to address the question whether apparently different support values really differ significantly. It is shown that the use of random addition cycles and parsimony ratchet iterations during bootstrapping does not translate into higher support, nor does any extension of the search extensiveness beyond the rather moderate effort of TBR (tree bisection and reconnection branch swapping) plus saving one tree per replicate. Instead, in case of very large matrices, saving more than one shortest tree per iteration and using a strict consensus tree of these yields decreased support compared to saving only one tree. This can be interpreted as a small risk of overestimating support but should be more than compensated by other factors that counteract an enhanced type I error. With regard to Bremer support, a rule of thumb can be derived stating that not much is gained relative to the surplus computational effort when searches are extended beyond 20 ratchet iterations per constrained node, at least not for datasets that fall within the size range found in the current literature. CONCLUSION: In view of these results, calculating bootstrap or jackknife proportions with narrow confidence intervals even for very large datasets can be achieved with less expense than often thought. In particular, iterated bootstrap methods that aim at reducing statistical bias inherent to these proportions are more feasible when the individual bootstrap searches require less time.  (+info)

Gene mutations and genomic rearrangements in the mouse as a result of transposon mobilization from chromosomal concatemers. (6/27)

Previous studies of the Sleeping Beauty (SB) transposon system, as an insertional mutagen in the germline of mice, have used reverse genetic approaches. These studies have led to its proposed use for regional saturation mutagenesis by taking a forward-genetic approach. Thus, we used the SB system to mutate a region of mouse Chromosome 11 in a forward-genetic screen for recessive lethal and viable phenotypes. This work represents the first reported use of an insertional mutagen in a phenotype-driven approach. The phenotype-driven approach was successful in both recovering visible and behavioral mutants, including dominant limb and recessive behavioral phenotypes, and allowing for the rapid identification of candidate gene disruptions. In addition, a high frequency of recessive lethal mutations arose as a result of genomic rearrangements near the site of transposition, resulting from transposon mobilization. The results suggest that the SB system could be used in a forward-genetic approach to recover interesting phenotypes, but that local chromosomal rearrangements should be anticipated in conjunction with single-copy, local transposon insertions in chromosomes. Additionally, these mice may serve as a model for chromosome rearrangements caused by transposable elements during the evolution of vertebrate genomes.  (+info)

The mechanism of gene targeting in Physcomitrella patens: homologous recombination, concatenation and multiple integration. (7/27)

The model bryophyte Physcomitrella patens exhibits high frequencies of gene targeting when transformed with DNA constructs containing sequences homologous with genomic loci. 'Targeted gene replacement' (TGR) resulting from homologous recombination (HR) between each end of a targeting construct and the targeted locus occurs when either single or multiple targeting vectors are delivered. In the latter instance simultaneous, multiple, independent integration of different transgenes occurs at the targeted loci. In both single gene and 'batch' transformations, DNA can also be found to undergo 'targeted insertion' (TI), integrating at one end of the targeted locus by HR with one flanking sequence of the vector accompanied by an apparent non-homologous end-joining (NHEJ) event at the other. Untargeted integration at nonhomologous sites also occurs, but at a lower frequency. Molecular analysis of TI at a single locus shows that this occurs as a consequence of concatenation of the transforming DNA, in planta, prior to integration, followed by HR between a single site in the genomic target and two of its repeated homologues in the concatenated vector. This reinforces the view that HR is the major pathway by which transforming DNA is integrated in Physcomitrella.  (+info)

DNA recombination-initiation plays a role in the extremely biased inheritance of yeast [rho-] mitochondrial DNA that contains the replication origin ori5. (8/27)

Hypersuppressiveness, as observed in Saccharomyces cerevisiae, is an extremely biased inheritance of a small mitochondrial DNA (mtDNA) fragment that contains a replication origin (HS [rho(-)] mtDNA). Our previous studies showed that concatemers (linear head-to-tail multimers) are obligatory intermediates for mtDNA partitioning and are primarily formed by rolling-circle replication mediated by Mhr1, a protein required for homologous mtDNA recombination. In this study, we found that Mhr1 is required for the hypersuppressiveness of HS [ori5] [rho(-)] mtDNA harboring ori5, one of the replication origins of normal ([rho(+)]) mtDNA. In addition, we detected an Ntg1-stimulated double-strand break at the ori5 locus. Purified Ntg1, a base excision repair enzyme, introduced a double-stranded break by itself into HS [ori5] [rho(-)] mtDNA at ori5 isolated from yeast cells. Both hypersuppressiveness and concatemer formation of HS [ori5] [rho(-)] mtDNA are simultaneously suppressed by the ntg1 null mutation. These results support a model in which, like homologous recombination, rolling-circle HS [ori5] [rho(-)] mtDNA replication is initiated by double-stranded breakage in ori5, followed by Mhr1-mediated homologous pairing of the processed nascent DNA ends with circular mtDNA. The hypersuppressiveness of HS [ori5] [rho(-)] mtDNA depends on a replication advantage furnished by the higher density of ori5 sequences and on a segregation advantage furnished by the higher genome copy number on transmitted concatemers.  (+info)