Predicting protein decomposition: the case of aspartic-acid racemization kinetics. (17/6430)

The increase in proportion of the non-biological (D-) isomer of aspartic acid (Asp) relative to the L-isomer has been widely used in archaeology and geochemistry as a tool for dating. the method has proved controversial, particularly when used for bones. The non-linear kinetics of Asp racemization have prompted a number of suggestions as to the underlying mechanism(s) and have led to the use of mathematical transformations which linearize the increase in D-Asp with respect to time. Using one example, a suggestion that the initial rapid phase of Asp racemization is due to a contribution from asparagine (Asn), we demonstrate how a simple model of the degradation and racemization of Asn can be used to predict the observed kinetics. A more complex model of peptide bound Asx (Asn + Asp) racemization, which occurs via the formation of a cyclic succinimide (Asu), can be used to correctly predict Asx racemization kinetics in proteins at high temperatures (95-140 degrees C). The model fails to predict racemization kinetics in dentine collagen at 37 degrees C. The reason for this is that Asu formation is highly conformation dependent and is predicted to occur extremely slowly in triple helical collagen. As conformation strongly influences the rate of Asu formation and hence Asx racemization, the use of extrapolation from high temperatures to estimate racemization kinetics of Asx in proteins below their denaturation temperature is called into question. In the case of archaeological bone, we argue that the D:L ratio of Asx reflects the proportion of non-helical to helical collagen, overlain by the effects of leaching of more soluble (and conformationally unconstrained) peptides. Thus, racemization kinetics in bone are potentially unpredictable, and the proposed use of Asx racemization to estimate the extent of DNA depurination in archaeological bones is challenged.  (+info)

Distribution of B-cell epitopes on the pseudorabies virus glycoprotein B. (18/6430)

In order to map antigenically important regions of glycoprotein B (gB) of pseudorabies virus (PrV), a panel of recombinant fragments of gB expressed in E. coli and truncated fragments of gB generated by cleavage of purified native gB with trypsin and cyanogen bromide was analysed by using 26 monoclonal antibodies directed against gB. Three continuous epitopes were localized in the vicinity of the N terminus of gB, between amino acids (aa) 59 and 126. One continuous epitope mapped between residues 214 and 279. The residues involved in the assembly of eight discontinuous epitopes were located between aa 540 and 734. The constituents of two discontinuous epitopes were harboured in a segment encompassing aa 540-646. The clustering of continuous epitopes at the extreme N terminus of PrV gB and the locations of residues involved in the assembly of discontinuous epitopes of PrV gB are in good agreement with data on epitope locations in gB homologues from other herpesviruses.  (+info)

Probing the unfolding pathway of alpha1-antitrypsin. (19/6430)

Protein misfolding plays a role in the pathogenesis of many diseases. alpha1-Antitrypsin misfolding leads to the accumulation of long chain polymers within the hepatocyte, reducing its plasma concentration and predisposing the patient to emphysema and liver disease. In order to understand the misfolding process, it is necessary to examine the folding of alpha1-antitrypsin through the different structures involved in this process. In this study we have used a novel technique in which unique cysteine residues were introduced at various positions into alpha1-antitrypsin and fluorescently labeled with N, N'-dimethyl-N-(iodoacetyl)-N'-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl)ethylenediamine. The fluorescence properties of each protein were studied in the native state and as a function of guanidine hydrochloride-mediated unfolding. The studies found that alpha1-antitrypsin unfolded through a series of intermediate structures. From the position of the fluorescence probes, the fluorescence quenching data, and the molecular modeling, we show that unfolding of alpha1-antitrypsin occurs via disruption of the A and C beta-sheets followed by the B beta-sheet. The implications of these data on both alpha1-antitrypsin function and polymerization are discussed.  (+info)

Acidic pH as a physiological regulator of human cathepsin L activity. (20/6430)

Human cysteine protease cathepsin L was inactivated at acid pH by a first-order process. The inactivation rate decreased with increasing concentrations of a small synthetic substrate, suggesting that substrates stabilize the active conformation. The substrate-independent inactivation rate constant increased with organic solvent content of the buffer, consistent with internal hydrophobic interactions, disrupted by the organic solvent, also stabilizing the enzyme. Circular dichroism showed that the inactivation is accompanied by large structural changes, a decrease in alpha-helix content being especially pronounced. The high activation energy of the reaction at pH 3.0 (200 kJ.mol-1) supported such a major conformational change occurring. The acid inactivation of cathepsin L was irreversible, consistent with the propeptide being needed for proper folding of the enzyme. Aspartic protease cathepsin D was shown to cleave denatured, but not active cathepsin L, suggesting a potential mechanism for in-vivo regulation and turnover of cathepsin L inside lysosomes.  (+info)

Site-directed mutagenesis of proline 204 in the 'hinge' region of yeast phosphoglycerate kinase. (21/6430)

Site-specific mutants have been produced in order to investigate the role of proline 204 in the 'hinge' region of yeast phosphoglycerate kinase (PGK). This totally conserved proline has been shown to be the only cis-proline in the high resolution crystal structures of yeast, B. stearothermophilus, T. brucei and T. maritima PGK, and may therefore have a role in the independent folding of the two domains or in the 'hinge' bending of the molecule during catalysis. The residue was replaced by a histidine (Pro204His) and a phenylalanine (Pro204Phe), and the resulting proteins characterised by differential scanning calorimetry (DSC), circular dichroism (CD), tryptophan fluorescence emission and kinetic analysis. Although the secondary and tertiary structure of the Pro204His protein is generally similar to that of the wild-type enzyme as assessed by CD, the enzyme is less stable to heat and guanidinium chloride denaturation than the wild-type. In the denaturation experiments two transitions were observed for both the wild-type and the Pro204His mutant, as have been previously reported for yeast PGK [Missiakas, D., Betton, J.M., Minard, P. & Yon, J.M. (1990) Biochemistry 29, 8683-8689]. The first transition is accompanied by an increase in fluorescence intensity leading to a hyperfluorescent state, followed by the second, corresponding to a decrease in fluorescence intensity. However, for the Pro204His mutant, the first transition proceeded at lower concentrations of guanidinium chloride and the second transition proceeded to the same extent as for the wild-type protein, suggesting that sequence-distant interactions are more rapidly disrupted in this mutant enzyme than in the wild-type enzyme, while sequence-local interactions are disrupted in a similar way. The Michaelis constants (K(m)) for both 3-phospho-D-glycerate and ATP are increased only by three or fourfold, which confirms that, as expected, the substrate binding sites are largely unaffected by the mutation. However, the turnover and efficiency of the Pro204His mutant is severely impaired, indicating that the mechanism of 'hinge' bending is hindered. The Pro204Phe enzyme was shown to be significantly less well folded than the wild-type and Pro204His enzymes, with considerable loss of both secondary and tertiary structure. It is proposed that the proline residue at 204 in the 'hinge' region of PGK plays a role in the stability and catalytic mechanism of the enzyme.  (+info)

Denatured states of human carbonic anhydrase II: an NMR study of hydrogen/deuterium exchange at tryptophan-indole-H(N) sites. (22/6430)

Hydrogen/deuterium (H/D) exchange measurements in low and moderate concentrations of GuHCI were conducted on the side chain H(N) atoms of the seven tryptophans of pseudo wild-type human carbonic anhydrase II. Tryptophans 5, 16 and 245, situated in or close to the N-terminal domain were found to have little protection against exchange. The H/D exchange results for Trp-123, Trp-192 and Trp-209 showed that a previously identified molten globule and the native state gave a similar protection against exchange. Global unfolding of the protein is necessary for the efficient exchange at Trp-97, which is located in the central part of the beta-sheet.  (+info)

Key role of barstar Cys-40 residue in the mechanism of heat denaturation of bacterial ribonuclease complexes with barstar. (23/6430)

The mechanism by which barnase and binase are stabilized in their complexes with barstar and the role of the Cys-40 residue of barstar in that stabilization have been investigated by scanning microcalorimetry. Melting of ribonuclease complexes with barstar and its Cys-82-Ala mutant is described by two 2-state transitions. The lower-temperature one corresponds to barstar denaturation and the higher-temperature transition to ribonuclease melting. The barstar mutation Cys-40-Ala, which is within the principal barnase-binding region of barstar, simplifies the melting to a single 2-state transition. The presence of residue Cys-40 in barstar results in additional stabilization of ribonuclease in the complex.  (+info)

Folding stability of the kinetoplastid membrane protein-11 (KMP-11) from Leishmania infantum. (24/6430)

Kinetoplastid membrane protein-11 (KMP-11) is a major component of the cell surface of kinetoplastids, and acts as a potent B- and T-cell immunogen during Leishmania infection. Here we report that the Leishmania infantum KMP-11 secondary structure adopts mainly an alpha-helical conformation at pH 7.5 and that its urea- and thermally-induced unfolding constitute a fully reversible two-step process. This allows estimation of a half-denaturation temperature of approximately 65 degrees C, a delta GDH2O at 20 degrees C of approximately 14.63 kJ.mol-1, and an increment of the reaction heat of approximately 183.92 kJ.mol-1 and an entropy of approximately 543.4 J.mol-1.deg-1, respectively, for the native-denatured equilibrium of the KMP-11 in solution. We also report that the KPM-11 protein is induced to adopt a molten globule state at a pH range between pH 4 and pH 6. As a whole, the stability and the specific features of the denaturing effect induced by changes in pH are similar in KMP-11 to various other lipoproteins.  (+info)