An overview of the evolution of overproduced esterases in the mosquito Culex pipiens. (1/3078)

Insecticide resistance genes have developed in a wide variety of insects in response to heavy chemical application. Few of these examples of adaptation in response to rapid environmental change have been studied both at the population level and at the gene level. One of these is the evolution of the overproduced esterases that are involved in resistance to organophosphate insecticides in the mosquito Culex pipiens. At the gene level, two genetic mechanisms are involved in esterase overproduction, namely gene amplification and gene regulation. At the population level, the co-occurrence of the same amplified allele in distinct geographic areas is best explained by the importance of passive transportation at the worldwide scale. The long-term monitoring of a population of mosquitoes in southern France has enabled a detailed study to be made of the evolution of resistance genes on a local scale, and has shown that a resistance gene with a lower cost has replaced a former resistance allele with a higher cost.  (+info)

The bystander effect in the HSVtk/ganciclovir system and its relationship to gap junctional communication. (2/3078)

The bystander effect (BSE) is an interesting and important property of the herpes thymidine kinase/ganciclovir (hTK/GCV) system of gene therapy for cancer. With the BSE, not only are the hTK expressing cells killed upon ganciclovir (GCV) exposure but also neighboring wild-type tumor cells. On testing a large number of tumor cell lines in vitro, a wide range of sensitivity to bystander killing was found. Since transfer of toxic GCV metabolites from hTK-modified to wild-type tumor cells via gap junctions (GJ) seemed to be a likely mechanism of the BSE, we tested GJ function in these various tumors with a dye transfer technique and pharmacological agents known to affect GJ communication. We confirmed that mixtures of tumor cell resistant to the BSE did not show dye transfer from cell to cell while bystander-sensitive tumor cells did. Dieldrin, a drug known to decrease GJ communication, diminished dye transfer and also inhibited the BSE. Forskolin, an upregulator of cAMP did increase GJ, but directly inhibited hTK and therefore its effect on BSE could not be determined. We conclude that these observations further support port the concept that functional GJ play an important role in the BSE and further suggest that pharmacological manipulation of GJ may influence the outcome of cancer therapy with hTK/GCV.  (+info)

Comparison of two in vitro activation systems for protoxicant organophosphorous esterase inhibitors. (3/3078)

In order to perform in vitro testing of esterase inhibition caused by organophosphorous (OP) protoxicants, simple, reliable methods are needed to convert protoxicants to their esterase-inhibiting forms. Incubation of parathion or chlorpyrifos with 0.05% bromine solution or uninduced rat liver microsomes (RLM) resulted in production of the corresponding oxygen analogs of these OP compounds and markedly increased esterase inhibition in SH-SY5Y human neuroblastoma cells. Neither activation system affected cell viability or the activity of AChE or NTE in the absence of OP compounds. Although parathion and chlorpyrifos were activated by RLM, bromine activation required fewer steps and produced more esterase inhibition for a given concentration of chlorpyrifos. However, RLM activation of OP protoxicants produced metabolites other than oxygen analogs and may, therefore, be more relevant as a surrogate for OP biotransformation in vivo. This methodology makes the use of intact cells for in vitro testing of esterase inhibition caused by protoxicant organophosphate compounds a viable alternative to in vivo tests.  (+info)

Comparative study of the anti-human cytomegalovirus activities and toxicities of a tetrahydrofuran phosphonate analogue of guanosine and cidofovir. (4/3078)

Cidofovir is the first nucleoside monophosphate analogue currently being used for the treatment of human cytomegalovirus (HCMV) retinitis in individuals with AIDS. Unfortunately, the period of therapy with the use of this compound may be limited due to the possible emergence of serious irreversible nephrotoxic effects. New drugs with improved toxicity profiles are needed. The goal of this study was to investigate the anticytomegaloviral properties and drug-induced toxicity of a novel phosphonate analogue, namely, (-)-2-(R)-dihydroxyphosphinoyl-5-(S)-(guanin-9'-yl-methyl) tetrahydrofuran (compound 1), in comparison with those of cidofovir. The inhibitory activities of both compounds on HCMV propagation in vitro were similar against the AD 169 and Towne strains, with 50% inhibitory concentrations ranging from 0.02 to 0.17 microgram/ml for cidofovir and < 0.05 to 0.09 microgram/ml for compound 1. A clinical HCMV isolate that was resistant to ganciclovir and that had a known mutation within the UL54 DNA polymerase gene and a cidofovir-resistant laboratory strain derived from strain AD 169 remained sensitive to compound 1, whereas their susceptibilities to ganciclovir and cidofovir were reduced by 33- and 10-fold, respectively. Both compound 1 and cidofovir exhibited equal potencies in an experimentally induced murine cytomegalovirus (MCMV) infection in mice, with a prevention or prolongation of mean day to death at dosages of 1.0, 3.2, and 10.0 mg/kg of body weight/day. In cytotoxicity experiments, compound 1 was found to be generally more toxic than cidofovir in cell lines Hs68, HFF, and 3T3-L1 (which are permissive for HCMV or MCMV replication) but less toxic than cidofovir in MRC-5 cells (which are permissive for HCMV replication). Drug-induced toxic side effects were noticed for both compounds in rats and guinea pigs in a 5-day repeated-dose study. In guinea pigs, a greater weight loss was noticed with cidofovir than with compound 1 at dosages of 3.0 and 10.0 mg/kg/day. An opposite effect was detected in rats, which were treated with the compounds at relatively high dosages (up to 100 mg/kg/day). Compound 1 and cidofovir were nephrotoxic in both rats and guinea pigs, with the epithelium lining the proximal convoluted tubules in the renal cortex being the primary target site. The incidence and the severity of the lesions were found to be dose dependent. The lesions observed were characterized by cytoplasm degeneration and nuclear modifications such as karyomegaly, the presence of pseudoinclusions, apoptosis, and degenerative changes. In the guinea pig model, a greater incidence and severity of lesions were observed for cidofovir than for compound 1 (P < 0.001) with a drug regimen of 10 mg/kg/day.  (+info)

A phosphonate-induced gene which promotes Penicillium-mediated bioconversion of cis-propenylphosphonic acid to fosfomycin. (5/3078)

Penicillium decumbens is able to epoxidize cis-propenylphosphonic acid (cPA) to produce the antibiotic fosfomycin [FOM; also referred to as phosphonomycin and (-)-cis-1,2-epoxypropylphosphonic acid], a bioconversion of considerable commercial significance. We sought to improve the efficiency of the process by overexpression of the genes involved. A conventional approach of isolating the presumed epoxidase and its corresponding gene was not possible since cPA epoxidation could not be achieved with protein extracts. As an alternative approach, proteins induced by cPA were detected by two-dimensional gel electrophoresis. The observation that a 31-kDa protein (EpoA) was both cPA induced and overaccumulated in a strain which more efficiently converted cPA suggested that it might take part in the bioconversion. EpoA was purified, its amino acid sequence was partially determined, and the corresponding gene was isolated from cosmid and cDNA libraries with oligonucleotide probes. The DNA sequence for this gene (epoA) contained two introns and an open reading frame encoding a peptide of 277 amino acids having some similarity to oxygenases. When the gene was subcloned into P. decumbens, a fourfold increase in epoxidation activity was achieved. epoA-disruption mutants which were obtained by homologous recombination could not convert cPA to FOM. To investigate the regulation of the epoA promoter, the bialaphos resistance gene (bar, encoding phosphinothricin acetyltransferase) was used to replace the epoA-coding region. In P. decumbens, expression of the bar reporter gene was induced by cPA, FOM, and phosphorous acid but not by phosphoric acid.  (+info)

Cholesteryl ester hydrolysis in J774 macrophages occurs in the cytoplasm and lysosomes. (6/3078)

The relationship of cholesteryl ester hydrolysis to the physical state of the cholesteryl ester in J774 murine macrophages was explored in cells induced to store cholesteryl esters either in anisotropic (ordered) inclusions or isotropic (liquid) inclusions. In contrast to other cell systems, the rate of cholesteryl ester hydrolysis was faster in cells containing anisotropic inclusions than in cells containing isotropic inclusions. Two contributing factors were identified. Kinetic analyses of the rates of hydrolysis are consistent with a substrate competition by co-deposited triglyceride in cells with isotropic inclusions. In addition, hydrolysis of cholesteryl esters in cells with anisotropic droplets is mediated by both cytoplasmic and lysosomal lipolytic enzymes, as shown by using the lysosomotropic agent, chloroquine, and an inhibitor of neutral cholesteryl ester hydrolase, umbelliferyl diethylphosphate. In cells containing anisotropic inclusions, hydrolysis was partially inhibited by incubation in media containing either chloroquine or umbelliferyl diethylphosphate. Together, chloroquine and umbelliferyl diethylphosphate completely inhibited hydrolysis. However, when cells containing isotropic inclusions were incubated with umbelliferyl diethylphosphate, cholesteryl ester hydrolysis was completely inhibited, but chloroquine had no effect. Transmission electron microscopy demonstrated a primarily lysosomal location for lipid droplets in cells with anisotropic droplets and both non-lysosomal and lysosomal populations of lipid droplets in cells with isotropic droplets. These results support the conclusion that there is a lysosomal component to the hydrolysis of stored cholesteryl esters in foam cells.  (+info)

Binding conformers searching method for ligands according to the structures of their receptors and its application to thrombin inhibitors. (7/3078)

AIM: To develop a method of finding binding conformers for ligands according to the three-dimensional structures of their receptors. METHODS: Combining the systematic search method of ligand with the molecular docking approach of ligand fitting into its receptor, we developed a binding conformer searching method for ligands. RESULTS: The binding conformers of phosphonopeptidyl thrombin inhibitors were recognized. The binding (interaction) energies between these inhibitors and thrombin were calculated with molecular mechanical method. CONCLUSION: Both of the total binding energies and steric binding energies have good correlations with the inhibitory activities of these thrombin inhibitors, demonstrating that our approach is reasonable. It can also be used to explain the inhibition mechanism of thrombin interacting with these inhibitors.  (+info)

Early short-term 9-[2-(R)-(phosphonomethoxy)propyl]adenine treatment favorably alters the subsequent disease course in simian immunodeficiency virus-infected newborn Rhesus macaques. (8/3078)

Simian immunodeficiency virus (SIV) infection of newborn macaques is a useful animal model of human pediatric AIDS to study disease pathogenesis and to develop intervention strategies aimed at delaying disease. In the present study, we demonstrate that very early events of infection greatly determine the ultimate disease course, as short-term antiviral drug administration during the initial viremia stage significantly delayed the onset of AIDS. Fourteen newborn macaques were inoculated orally with uncloned, highly virulent SIVmac251. The four untreated control animals showed persistently high virus levels and poor antiviral immune responses; they developed fatal immunodeficiency within 15 weeks. In contrast, SIV-infected newborn macaques which were started on 9-[2-(R)-(phosphonomethoxy)propyl]adenine (PMPA) treatment at 5 days of age and continued for either 14 or 60 days showed reduced virus levels and enhanced antiviral immune responses. This short-term PMPA treatment did not induce detectable emergence of SIV mutants with reduced in vitro susceptibility to PMPA. Although viremia increased in most animals after PMPA treatment was withdrawn, all animals remained disease-free for at least 6 months. Our data suggest that short-term treatment with a potent antiviral drug regimen during the initial viremia will significantly prolong AIDS-free survival for HIV-infected infants and adults.  (+info)