Molecular determination of species boundaries in corals: genetic analysis of the Montastraea annularis complex using amplified fragment length polymorphisms and a microsatellite marker. (1/405)

Analyses of DNA have not been widely used to distinguish coral sibling species. The three members of the Montastraea annularis complex represent an important test case: they are widely studied and dominate Caribbean reefs, yet their taxonomic status remains unclear. Analysis of amplified fragment length polymorphisms (AFLPs) and a microsatellite locus, using DNA from sperm, showed that Montastraea faveolata is genetically distinct. One AFLP primer yielded a diagnostic product (880 bp in M. faveolata 920 bp in M. franksi and M. annularis) whose homology was established by DNA sequencing. A second primer revealed a 630 bp band that was fixed in M. faveolata, and rare in M. franksi and M. annularis; in this case homologies were confirmed by Southern hybridizations. A tetranucleotide microsatellite locus with several alleles exhibited strong frequency differences between M. faveolata and the other two taxa. We did not detect comparable differences between M. annularis and M. franksi with either AFLPs (12 primers screened) or the microsatellite locus. Comparisons of AFLP patterns obtained from DNA from sperm, somatic tissues, and zooxanthellae suggest that the technique routinely amplifies coral (animal) DNA. Thus analyses based on somatic tissues may be feasible, particularly after diagnostic differences have been established using sperm DNA.  (+info)

Atypically low rate of cytochrome b evolution in the scleractinian coral genus Acropora. (2/405)

Unexpectedly low levels of mitochondrial DNA (mtDNA) cytochrome b sequence divergence are found between species of the scleractinian coral genus Acropora. Comparison of 964 positions of the cytochrome b gene of two out of the three Caribbean Acropora species with seven of their Pacific congeners shows only 0.3-0.8% sequence difference. Species in these biogeographic regions have been evolving independently for at least three million years (since the rise of the Isthmus of Panama) and this geological date is used to estimate nucleotide divergence rates. The results indicate that the Acropora cytochrome b gene is evolving at least 10-20 times slower than the 'standard' vertebrate mtDNA clock and is one of the most slowly evolving animal mitochondrial genes described to date. The possibility is discussed that, unlike higher animals, cnidarians may have a functional mtDNA mismatch repair system.  (+info)

Evidence of a cyclooxygenase-related prostaglandin synthesis in coral. The allene oxide pathway is not involved in prostaglandin biosynthesis. (3/405)

Certain corals are rich natural sources of prostaglandins, the metabolic origin of which has remained undefined. By analogy with the lipoxygenase/allene oxide synthase pathway to jasmonic acid in plants, the presence of (8R)-lipoxygenase and allene oxide synthase in the coral Plexaura homomalla suggested a potential metabolic route to prostaglandins (Brash, A. R., Baertshi, S. W., Ingram, C.D., and Harris, T. M. (1987) J. Biol. Chem. 262, 15829-15839). Other evidence, from the Arctic coral Gersemia fruticosa, has indicated a cyclooxygenase intermediate in the biosynthesis (Varvas, K., Koljak, R., Jarving, I., Pehk, T., and Samel, N. (1994) Tetrahedron Lett. 35, 8267-8270). In the present study, active preparations of G. fruticosa have been used to identify both types of arachidonic acid metabolism and specific inhibitors were used to establish the enzyme type involved in the prostaglandin biosynthesis. The synthesis of prostaglandins and (11R)-hydroxyeicosatetraenoic acid was inhibited by mammalian cyclooxygenase inhibitors (indomethacin, aspirin, and tolfenamic acid), while the formation of the products of the 8-lipoxygenase/allene oxide pathway was not affected or was increased. The specific cyclooxygenase-2 inhibitor, nimesulide, did not inhibit the synthesis of prostaglandins in coral. We conclude that coral uses two parallel routes for the initial oxidation of polyenoic acids: the cyclooxygenase route, which leads to optically active prostaglandins, and the lipoxygenase/allene oxide synthase metabolism, the role of which remains to be established. An enzyme related to mammalian cyclooxygenases is the key to prostaglandin synthesis in coral. Based on our inhibitor data, the catalytic site of this evolutionary early cyclooxygenase appears to differ significantly from both known mammalian cyclooxygenases.  (+info)

The protein phosphatase inhibitor cantharidin induces head and foot formation in buds of Cassiopea andromeda (Rhizostomae, Scyphozoa). (4/405)

The polyps of Cassiopea andromeda produce spindle shaped, freely swimming buds which do not develop a head (a mouth opening surrounded by tentacles) and a foot (a sticky plate at the opposite end) until settlement to a suited substrate. The buds, therewith, look very similar to the planula larvae produced in sexual reproduction. With respect to both, buds and planulae, several peptides and the phorbolester TPA have been found to induce the transformation into a polyp. Here it is shown that cantharidin, a serine/threonine protein phosphatase inhibitor, induces head and foot formation in buds very efficiently in a 30 min treatment, the shortest yet known efficient treatment. Some resultant polyps show malformations which indicate that a bud is ordinary polyp tissue in which preparatory steps of head and foot formation mutually block each other from proceeding. Various compounds related to the transfer of methyl groups have been shown to affect head and foot formation in larvae of the hydrozoon Hydractinia echinata. These compounds including methionine, homocysteine, trigonelline, nicotinic acid and cycloleucine are shown to also interfere with the initiation of the processes which finally lead to head and foot formation in buds of Cassiopea andromeda.  (+info)

Coral grafting supplemented with bone marrow. (5/405)

Limited success in regenerating large bone defects has been achieved by bridging them with osteoconductive materials. These substitutes lack the osteogenic and osteoinductive properties of bone autograft. A direct approach would be to stimulate osteogenesis in these biomaterials by the addition of fresh bone-marrow cells (BMC). We therefore created osteoperiosteal gaps 2 cm wide in the ulna of adult rabbits and either bridged them with coral alone (CC), coral supplemented with BMC, or left them empty. Coral was chosen as a scaffold because of its good biocompatibility and resorbability. In osteoperiosteal gaps bridged with coral only, the coral was invaded chiefly by fibrous tissue. It was insufficient to produce union after two months. In defects filled with coral and BMC an increase in osteogenesis was observed and the bone surface area was significantly higher compared with defects filled with coral alone. Bony union occurred in six out of six defects filled with coral and BMC after two months. An increase in the resorption of coral was also observed, suggesting that resorbing cells or their progenitors were present in bone marrow and survived the grafting procedure. Our findings have shown that supplementation of coral with BMC increased both the resorption of material and osteogenesis in defects of a clinical significance.  (+info)

Reproductive and genetic evidence for a reticulate evolutionary history of mass-spawning corals. (6/405)

Reef-building corals, which reproduce through simultaneous multispecies spawning, are thought to hybridize frequently, and it is hypothesized that they have evolved in repeated rounds of species separation and fusion. We conducted cross-fertilization experiments and molecular analyses with a number of mass-spawning coral species in the genus Acropora. A high rate of interspecific fertilization occurred between some species despite very different morphologies. The hybrid larvae developed normally and contained an allelic sequence transmitted from each parent, suggesting common diploid hybridization. Molecular phylogenetic analyses provided strong evidence for a gene pool shared between the hybridizing species. These reproductive and genetic characteristics are consistent with a species complex formed under the separation/fusion processes predicted for a reticulate evolutionary history.  (+info)

Purification and catalytic activities of the two domains of the allene oxide synthase-lipoxygenase fusion protein of the coral Plexaura homomalla. (7/405)

The conversion of fatty acid hydroperoxides to allene epoxides is catalyzed by a cytochrome P450 in plants and, in coral, by a 43-kDa catalase-related hemoprotein fused to the lipoxygenase that synthesizes the 8R-hydroperoxyeicosatetraenoic acid (8R-HPETE) substrate. We have expressed the separate lipoxygenase and allene oxide synthase (AOS) domains of the coral protein in Escherichia coli (BL21 cells) and purified the proteins; this system gives high expression (1.5 and 0.3 micromol/liter, respectively) of catalytically active enzymes. Both domains show fast reaction kinetics. Catalytic activity of the lipoxygenase domain is stimulated 5-fold by high concentrations of monovalent cations (500 mM Na(+), Li(+), or K(+)), and an additional 5-fold by 10 mM Ca(2+). The resulting rates of reaction are approximately 300 turnovers/s, 1-2 orders of magnitude faster than mammalian lipoxygenases. This makes the coral lipoxygenase well suited for partnership with the AOS domain, which shows maximum rates of approximately 1400 turnovers/s in the conversion of 8R-HPETE to the allene oxide. Some unusual catalytic activities of the two domains are described. The lipoxygenase domain converts 20.3omega6 partly to the bis-allylic hydroperoxide (10-hydroperoxyeicosa-8,11,14-trienoic acid). Metabolism of the preferred substrate of the AOS domain, 8R-HPETE, is inhibited by the enantiomer 8S-HPETE. Although the AOS domain has homology to catalase in primary structure, it is completely lacking in catalatic action on H(2)O(2); catalase itself, as expected from its preference for small hydroperoxides, is ineffective in allene oxide synthesis from 8R-HPETE.  (+info)

Are there mechanical limits to size in wave-swept organisms? (8/405)

Hydrodynamic forces imposed by ocean waves are thought to limit the size of nearshore plants and animals, but it has proved difficult to determine the mechanism. Explanations based on the scaling mismatch between hydrodynamic accelerational forces and the strength of organisms do not work. Mechanisms that incorporate the allometry of drag and strength accurately predict the maximal size of intertidal algae but not of animals, and internally imposed inertial forces may explain the limits to size in large kelps. The general question of size in wave-swept organisms remains open and intriguing.  (+info)