DSC and NMR spectroscopic studies of the interaction between camphorated phenol and phospholipid liposomes. (1/184)

To clarify the interaction mechanism of biological activities induced by camphorated phenol (CP), the interactions between CP and phospholipid liposomes [dipalmitoyl phosphatidylcholine (DPPC) liposomes, dimyristoyl phosphatidylcholine (DMPC) liposomes and DMPC/dilauloyl phosphatidylethanolamine (DLEA) liposomes] were studies by DSC and NMR spectroscopy. CP exhibited a larger DSC phase transition properties [shift of phase transition temperature to a lower temperature and decrease in Height/Half-Height Width (H/HHW) of DSC peak)] than phenol in the various liposome systems. It was concluded from the NMR studies that CP is highly incorporated into the DPPC bilayer, the 1H and 13C signals of phenol in a complex between phenol and camphor being markedly broadened but shielded in the presence of DPPC liposomes. It was clear that CP is incorporated as a complex into the lipid bilayers.  (+info)

Odor response properties of rat olfactory receptor neurons. (2/184)

Molecular biology studies of olfaction have identified a multigene family of molecular receptors that are likely to be involved in odor transduction mechanisms. However, because previous functional data on peripheral coding were mainly collected from inferior vertebrates, it has been difficult to document the degree of specificity of odor interaction mechanisms. As a matter of fact, studies of the functional expression of olfactory receptors have not demonstrated the low or high specificity of olfactory receptors. In this study, the selectivity of olfactory receptor neurons was investigated in the rat at the cellular level under physiological conditions by unitary extracellular recordings. Individual olfactory receptor neurons were broadly responsive to qualitatively distinct odor compounds. We conclude that peripheral coding is based on activated arrays of olfactory receptor cells with overlapping tuning profiles.  (+info)

Mutations of glutamate-84 at the putative potassium-binding site affect camphor binding and oxidation by cytochrome p450cam. (3/184)

Cytochrome P450cam (CYP101) from Pseudomonas putida is unusual among P450 enzymes in that it exhibits co-operative binding between the substrate camphor and a potassium ion. This behaviour has been investigated by mutagenesis of Glu84, a surface residue which forms part of the cation-binding site. Substitutions that neutralize or reverse the charge of this side chain are shown to disrupt the co-operativity of potassium and camphor binding by P450cam, and also to influence the catalytic activity. In particular, replacement of Glu84 by positively charged residues such as lysine results in increased high-spin haem fractions and camphor turnover activities in the absence of potassium, along with decreased camphor dissociation constants. However, in the presence of potassium the camphor dissociation constants of these mutants are significantly increased compared with the wild-type, although the camphor turnover activities remain marginally higher. In contrast, substitution by aspartate results in tighter binding of both potassium and camphor, but has little effect on the enzymatic activity. In all cases the reaction remains essentially 100% coupled and gives 5-exo-hydroxycamphor as the only product. These results suggest that an anionic side chain at the 84 position is crucial for the co-operativity of camphor and cation binding, and that the physiological role for potassium binding by cytochrome P450cam is to promote camphor binding even at the expense of turnover rate, thus allowing the organism to utilize low environmental concentrations of this substrate for growth.  (+info)

Assignment of heme methyl 1H-NMR resonances of high-spin and low-spin ferric complexes of cytochrome p450cam using one-dimensional and two-dimensional paramagnetic signals enhancement (PASE) magnetization transfer experiments. (4/184)

An 1H-NMR study of ferric cytochrome P450cam in different paramagnetic states was performed. Assignment of three heme methyl resonances of the isocyanide adduct of cytochrome P450 in the ferric low-spin state was recently performed using electron exchange in the presence of putidaredoxin [Mouro, C., Bondon, A., Jung, C., Hui Bon Hoa, G., De Certaines, J.D., Spencer, R.G.S. & Simonneaux, G. (1999) FEBS Lett. 455, 302-306]. In this study, heme methyl protons of cytochrome P450 in the native high-spin and low-spin states were assigned through one-dimensional and two-dimensional magnetization transfer spectroscopy using the paramagnetic signals enhancement (PASE) method. The order of the methyl proton chemical shifts is inverted between high-spin and low-spin states. The methyl order observed in the ferric low-spin isocyanide complexes is related to the orientation of the cysteinate ligand.  (+info)

A thermodynamic model of regulation: modulation of redox equilibria in camphor monoxygenase. (5/184)

Regulation of biological phenomena occurs in all types of systems, being manifested in many different reaction types, from allosteric behavior in proteins, through modulation in energy and information transfer, to the control of growth and differentiation in cells, organelles, and organisms. In this communication, a modulation in oxidation/reduction potential via ligation of substrate and protein components in the camphor 5-exo-monoxygenase system is described in terms of a four-state system using as fundamental parameters the transition free energies between equilibrium states. This approach provides a concise description of the data and is useful for describing many aspects of regulatory phenomena.  (+info)

The catalytic pathway of cytochrome p450cam at atomic resolution. (6/184)

Members of the cytochrome P450 superfamily catalyze the addition of molecular oxygen to nonactivated hydrocarbons at physiological temperature-a reaction that requires high temperature to proceed in the absence of a catalyst. Structures were obtained for three intermediates in the hydroxylation reaction of camphor by P450cam with trapping techniques and cryocrystallography. The structure of the ferrous dioxygen adduct of P450cam was determined with 0.91 angstrom wavelength x-rays; irradiation with 1.5 angstrom x-rays results in breakdown of the dioxygen molecule to an intermediate that would be consistent with an oxyferryl species. The structures show conformational changes in several important residues and reveal a network of bound water molecules that may provide the protons needed for the reaction.  (+info)

Examination of the enantiomeric distribution of certain monoterpene hydrocarbons in selected essential oils by automated solid-phase microextraction-chiral gas chromatography-mass selective detection. (7/184)

A viable approach for the determination of sources of essential oils based on automatic injection solid-phase microextraction-chiral-gas chromatography-mass selective detection is demonstrated. With no sample preparation, it is shown that the source of essential oils such as peppermint, spearmint, and rosemary can be easily distinguished. Short fiber exposure times of approximately 6 s to the headspace above submicroliter quantities of the selected oils are all that is required to obtain both the required sensitivity and resolution to afford analyses with excellent reproducibilities (relative standard deviation values consistently less than 5.0%).  (+info)

Effectiveness of the addition of water-soluble photoinitiator into the self-etching primers on the adhesion of a resin composite to polished dentin and enamel. (8/184)

The effectiveness of the addition of a photoinitiator into self-etching primer was investigated by measuring the tensile bond strength between a resin composite and dentin or enamel. The addition of camphorquinone to 5 M (5 wt% MDP -35 wt% HEMA aqueous solution) or 30 M (30 wt% MDP -35 wt% HEMA aqueous solution) did not increase the bond strengths of resin composite to dentin or enamel. On the other hand, the bond strength to dentin was increased by the addition of a water-soluble photoinitiator, 2-hydroxy-3-(3,4-dimethyl-9-oxo-9H-thioxanthen-2-yloxy)-N,N, N-trimethyl-1- propanaminium chloride (QTX) to 5 M or 30 M. The bond strengths to enamel were not influenced by the addition of QTX to 5 M or 30 M.  (+info)