NMR structure and dynamics of monomeric neutrophil-activating peptide 2. (1/247)

Neutrophil-activating peptide 2 (NAP-2), which demonstrates a range of proinflammatory activities, is a 72-residue protein belonging to the alpha-chemokine family. Although NAP-2, like other alpha-chemokines, is known to self-associate into dimers and tetramers, it has been shown that the monomeric form is physiologically active. Here we investigate the solution structure of monomeric NAP-2 by multi-dimensional 1H-NMR and 15N-NMR spectroscopy and computational modelling. The NAP-2 monomer consists of an amphipathic, triple-stranded, anti-parallel beta-sheet on which is folded a C-terminal alpha-helix and an aperiodic N-terminal segment. The backbone fold is essentially the same as that found in other alpha-chemokines. 15N T1, T2 and nuclear Overhauser effects (NOEs) have been measured for backbone NH groups and used in a model free approach to calculate order parameters and conformational exchange terms that map out motions of the backbone. N-terminal residues 1 to 17 and the C-terminus are relatively highly flexible, whereas the beta-sheet domain forms the most motionally restricted part of the fold. Conformational exchange occurring on the millisecond time scale is noted at the top of the C-terminal helix and at proximal residues from beta-strands 1 and 2 and the connecting loop. Dissociation to the monomeric state is apparently responsible for increased internal mobility in NAP-2 compared with dimeric and tetrameric states in other alpha-chemokines.  (+info)

In vitro antibacterial activities of platelet microbicidal protein and neutrophil defensin against Staphylococcus aureus are influenced by antibiotics differing in mechanism of action. (2/247)

Thrombin-induced platelet microbicidal protein-1 (tPMP-1) and human neutrophil defensin-1 (HNP-1) are small, cationic antimicrobial peptides. These peptides exert potent in vitro microbicidal activity against a broad spectrum of human pathogens, including Staphylococcus aureus. Evidence suggests that tPMP-1 and HNP-1 target and disrupt the bacterial membrane. However, it is not yet clear whether membrane disruption itself is sufficient to kill the bacterium or whether subsequent, presumably intracellular, events are also involved in killing. We investigated the staphylocidal activities of tPMP-1 and HNP-1 in the presence or absence of pretreatment with antibiotics that differ in their mechanisms of action. The staphylocidal effects of tPMP-1 and HNP-1 on control cells (no antibiotic pretreatment) were rapid and concentration dependent. Pretreatment of S. aureus with either penicillin or vancomycin (bacterial cell wall synthesis inhibitors) significantly enhanced the anti-S. aureus effects of tPMP-1 compared with the effects against the respective control cells over the entire tPMP-1 concentration range tested (P < 0.05). Similarly, S. aureus cells pretreated with these antibiotics were more susceptible to HNP-1 than control cells, although the difference in the effects against cells that received penicillin pretreatment did not reach statistical significance (P < 0.05 for cells that received vancomycin pretreatment versus effects against control cells). Studies with isogenic pairs of strains with normal or deficient autolytic enzyme activities demonstrated that enhancement of S. aureus killing by cationic peptides and cell wall-active agents could not be ascribed to a predominant role of autolytic enzyme activation. Pretreatment of S. aureus cells with tetracycline, a 30S ribosomal subunit inhibitor, significantly decreased the staphylocidal effect of tPMP-1 over a wide peptide concentration range (0.16 to 1.25 microgram/ml) (P < 0.05). Furthermore, pretreatment with novobiocin (an inhibitor of bacterial DNA gyrase subunit B) and with azithromycin, quinupristin, or dalfopristin (50S ribosomal subunit protein synthesis inhibitors) essentially blocked the S. aureus killing resulting from exposure to tPMP-1 or HNP-1 at most concentrations compared with the effects against the respective control cells (P < 0.05 for a tPMP-1 concentration range of 0.31 to 1.25 microgram/ml and for an HNP-1 concentration range of 6.25 to 50 microgram/ml). These findings suggest that tPMP-1 and HNP-1 exert anti-S. aureus activities through mechanisms involving both the cell membrane and intracellular targets.  (+info)

Comparison of the antithrombotic effect of PEG-hirudin and heparin in a human ex vivo model of arterial thrombosis. (3/247)

Polyethylene glycol (PEG)-hirudin is a derivative of hirudin with a long plasma half-life. We have compared the efficacy of PEG-hirudin with unfractionated heparin (UH) in preventing arterial thrombosis. Arterial thrombus formation was induced ex vivo in 12 healthy human volunteers by exposing a tissue factor-coated coverslip positioned in a parallel-plate perfusion chamber to flowing nonanticoagulated human blood drawn directly from an antecubital vein at an arterial wall shear rate of 2600 s-1 for 3.5 minutes. PEG-hirudin, UH, or saline (as control) were administered ex vivo through a heparin-coated mixing device positioned proximal to the perfusion chamber. Platelet and fibrin deposition was quantified by immunoenzymatic measure of the P-selectin and D-dimer content of dissolved plasmin-digested thrombi, respectively. UH was administered to a plasma concentration of 0.35 IU/mL. This concentration prolonged the activated partial thromboplastin time from 32+/-1 seconds to 79+/-4 seconds (P<0.01). UH did not significantly prevent platelet deposition. However, fibrin deposition was reduced by 39% (P<0.05). PEG-hirudin in plasma concentrations of 0.5, 2.5, and 5 microg/mL prolonged the activated partial thromboplastin time to 48+/-2, 87+/-4, and 118+/-4 seconds, respectively. In contrast to UH, PEG-hirudin prevented both platelet and fibrin deposition in a dose-dependent manner with a >80% reduction at 5 microg/mL (P<0.01). Furthermore, the plasma level of PEG-hirudin required to significantly prevent fibrin deposition (0.5 microg/mL) corresponded to a much shorter prolongation of activated partial thromboplastin time (48+/-2 seconds) than that needed for UH (79+/-4 seconds). Thus, our results are compatible with the view that thrombin is greatly involved in recruitment of platelets in evolving thrombi, and that PEG-hirudin is an effective agent for preventing arterial thrombosis in a human ex vivo experimental model.  (+info)

Large amounts of vascular endothelial growth factor at the site of hemostatic plug formation in vivo. (4/247)

Vascular endothelial growth factor (VEGF) is important for the proliferation, differentiation, and survival of microvascular endothelial cells. It is a potent angiogenic factor and a specific endothelial cell mitogen that increases fenestration and extravasation of plasma macromolecules. Recently, large quantities of VEGF were detected in human megakaryocytes. Incubation of human platelets with thrombin in vitro resulted in the release of large amounts of VEGF. To investigate whether VEGF is released from platelets during coagulation activation in vivo, we measured in human subjects VEGF at the site of plug formation, ie, in blood emerging from a standardized injury made to determine bleeding time (shed blood). VEGF was also determined in the same volunteers after treatment with the specific thrombin inhibitor recombinant hirudin (r-hirudin). In a double-blind, randomized, crossover study, 17 healthy male volunteers (aged 20 to 35 years) were investigated. VEGF concentrations were measured in venous blood and in shed blood by the use of an immunoassay 10 minutes after intravenous administration of r-hirudin (0.35 mg/kg of body weight) or physiological saline. Prothrombin fragment f1.2 (f1.2) and beta-thromboglobulin (beta-TG) were determined as indicators of coagulation and platelet activation, respectively. Concentrations of VEGF, f1.2, and beta-TG in shed blood 4 minutes after injury were significantly higher than in venous blood (VEGF, 55.8+/-9.2 versus <20 pg/mL, P<0.001; f1.2, 71.3+/-10.4 versus 0.78+/-0.03 nmol/L, P<0. 001; beta-TG, 2290+/-170 versus 53.2+/-14.0 ng/mL, P<0.001). Administration of r-hirudin caused a >50% inhibition of the beta-TG and f1.2 levels in shed blood. In a similar manner, much lower amounts of VEGF were detectable at the site of plug formation after r-hirudin treatment (69.0+/-9.5 versus 37.8+/-2.6 pg/mL per minute; P=0.0015). Our data indicate that substantial quantities of VEGF are released from platelets during the interaction with the injured vessel wall in vivo. This finding may be relevant with respect to wound healing and tissue repair, tumor vascularization, or arterial thrombus formation.  (+info)

Increased formation of thromboxane in vivo in humans with mastocytosis. (5/247)

Clinical manifestations of mastocytosis are mediated, at least in part, by release of the mast cell mediators histamine and prostaglandin D2. It has been previously reported that in addition to prostaglandin D2, mast cells produce other eicosanoids, including thromboxane. Nonetheless, little information exists regarding the formation of other prostanoids in vivo. The most accurate method to examine the systemic production of eicosanoids in vivo is the quantitation of urinary metabolites. We previously developed a highly accurate assay employing mass spectrometry to measure a major urinary metabolite of thromboxane, 11-dehydro-thromboxane B2, in humans. We utilized this assay to quantitate thromboxane production in 17 patients with histologically proven mastocytosis. We report that thromboxane formation was significantly increased (>2 SD above the mean) in at least one urine sample from 65% of patients studied. Of these, 91% of patients with documented systemic involvement had elevated thromboxane generation. In addition, endogenous formation of thromboxane was highly correlated with the urinary excretion of the major urinary metabolite of prostaglandin D2 (r = 0.98) and Ntau-methylhistamine (r = 0.91), suggesting that the cellular source of increased thromboxane in vivo could be the mastocyte. Enhanced thromboxane formation in patients with this disorder is unlikely to be of platelet origin as other markers of platelet activation, platelet factor 4 and beta-thromboglobulin, were not increased in three patients with marked overproduction of thromboxane. Furthermore, the recovery of 11-dehydro-thromboxane B2 excretion in two patients after the administration of aspirin occurred significantly more rapidly than the recovery of platelet thromboxane generation. These studies, therefore, report that thromboxane production is significantly increased in the majority of patients with mastocytosis that we examined and provide the basis to elucidate the role of this eicosanoid in disorders of mast cell activation.  (+info)

Changes of hemostasis, endogenous fibrinolysis, platelet activation and endothelins after percutaneous transluminal coronary angioplasty in patients with stable angina. (6/247)

OBJECTIVES: This study investigated parameters of endogenous fibrinolysis, activation of coagulation and platelets, and endothelin levels before and after elective percutaneous transluminal coronary angioplasty (PTCA) in patients with stable coronary artery disease (CAD). BACKGROUND: Abrupt vessel closure is a serious short-term complication after PTCA and is often unforeseeable. Detailed insight into the effect of PTCA on hemostasis, platelets and the release of vasoconstrictive substances, which are among the mainly discussed mechanisms of abrupt vessel closure, is needed to enhance the safety of coronary intervention. METHODS: Plasma levels of markers of platelet activity, coagulation, endogenous fibrinolysis and endothelins were determined in 20 patients with stable CAD undergoing elective PTCA. The blood specimens were drawn before, immediately after, 1 h after intervention and on the next morning. RESULTS: All patients showed an initially uncomplicated PTCA. Regarding the efficacy of anticoagulation after receiving 15.000 IU heparin during PTCA, two groups were compared. In eight patients with ineffective anticoagulation production of thrombin and platelet activation directly after and 1 h after PTCA was significantly higher compared with 12 patients with effective anticoagulation. Despite the strong activation of coagulation, only a low fibrinolytic response could be observed. Endothelins rose significantly after PTCA in both groups but stayed longer on higher levels in patients with distinct thrombin generation. Three of the eight patients without sufficient heparin treatment suffered abrupt vessel closure. CONCLUSIONS: Initially uncomplicated dilation of coronary arteries leads to systemically measurable activation of coagulation and platelets in patients with ineffective doses of heparin and release of endothelins in all patients. Therefore, individual adjustment of anticoagulation and platelet inhibition in combination with effective antivasospastic substances are needed in every patient before, during and after initially uncomplicated PTCA to prevent this serious complication.  (+info)

Plasmid-mediated resistance to thrombin-induced platelet microbicidal protein in staphylococci: role of the qacA locus. (7/247)

Thrombin-induced platelet microbicidal protein 1 (tPMP-1) is a small, cationic peptide released from rabbit platelets following thrombin stimulation. In vitro resistance to this peptide among strains of Staphylococcus aureus correlates with the survival advantage of such strains at sites of endothelial damage in humans as well as in experimental endovascular infections. The mechanisms involved in the phenotypic resistance of S. aureus to tPMP-1 are not fully delineated. The plasmid-encoded staphylococcal gene qacA mediates multidrug resistance to multiple organic cations via a proton motive force-dependent efflux pump. We studied whether the qacA gene might also confer resistance to cationic tPMP-1. Staphylococcal plasmids encoding qacA were found to confer resistance to tPMP-1 in an otherwise susceptible parental strain. Deletions which removed the region containing the qacA gene in the S. aureus multiresistance plasmid pSK1 abolished tPMP-1 resistance. Resistance to tPMP-1 in the qacA-bearing strains was inoculum independent but peptide concentration dependent, with the level of resistance decreasing at higher peptide concentrations for a given inoculum. There was no apparent cross-resistance in qacA-bearing strains to other endogenous cationic antimicrobial peptides which are structurally distinct from tPMP-1, including human neutrophil defensin 1, protamine, or the staphylococcal lantibiotics pep5 and nisin. These data demonstrate that the staphylococcal multidrug resistance gene qacA also mediates in vitro resistance to cationic tPMP-1.  (+info)

PDGF-AB release during and after haemodialysis procedure. (8/247)

BACKGROUND: During haemodialysis blood membrane contact causes the release of the content of platelet alpha-granules, which contain platelet-derived growth factor (PDGF). In view of its possible role in accelerated atherosclerotic processes, we evaluated the intra- and post-dialytic changes in PDGF-AB serum levels during haemodialysis sessions performed using a cellulosic membrane. METHODS: Using the ELISA method, PDGF-AB, platelet factor-4 (PF4) and beta-thromboglobulin (beta-TG) levels were determined in peripheral blood, as well as in arterial and venous haemodialyser lines, in 10 patients each of whom underwent five consecutive dialysis sessions with a CU membrane. Blood samples were taken at 0, 15, 30, 60, 120, 180 and 240 min during dialysis and at 1, 4 and 20 h after the end of the session. In the same group of patients the levels of the same molecules were also determined after a heparin bolus injection of 4500 IU, blood samples were taken at 0, 15 and 30 min after injection of the bolus. RESULTS: PDGF-AB serum levels increased, remained consistently high during the haemodialysis session (in particular +134+/-20% after 30 min, P<0.001, and +140+/-5% after 240 min, P<0.001) and returned to basal values only after 20 h following the end of the session. PF4 and beta-TG showed a similar trend to PDGF. The heparin bolus injection caused only a small increase (+15+/-5% at 30 min) in PDGF-AB serum levels. CONCLUSIONS: PDGF-AB is released during dialysis mainly as consequence of the blood-membrane contact and it returns only slowly to basal values.  (+info)