Hmo1p, a high mobility group 1/2 homolog, genetically and physically interacts with the yeast FKBP12 prolyl isomerase. (17/7076)

The immunosuppressive drugs FK506 and rapamycin bind to the cellular protein FKBP12, and the resulting FKBP12-drug complexes inhibit signal transduction. FKBP12 is a ubiquitous, highly conserved, abundant enzyme that catalyzes a rate-limiting step in protein folding: peptidyl-prolyl cis-trans isomerization. However, FKBP12 is dispensible for viability in both yeast and mice, and therefore does not play an essential role in protein folding. The functions of FKBP12 may involve interactions with a number of partner proteins, and a few proteins that interact with FKBP12 in the absence of FK506 or rapamycin have been identified, including the ryanodine receptor, aspartokinase, and the type II TGF-beta receptor; however, none of these are conserved from yeast to humans. To identify other targets and functions of FKBP12, we have screened for mutations that are synthetically lethal with an FKBP12 mutation in yeast. We find that mutations in HMO1, which encodes a high mobility group 1/2 homolog, are synthetically lethal with mutations in the yeast FPR1 gene encoding FKBP12. Deltahmo1 and Deltafpr1 mutants share two phenotypes: an increased rate of plasmid loss and slow growth. In addition, Hmo1p and FKBP12 physically interact in FKBP12 affinity chromatography experiments, and two-hybrid experiments suggest that FKBP12 regulates Hmo1p-Hmo1p or Hmo1p-DNA interactions. Because HMG1/2 proteins are conserved from yeast to humans, our findings suggest that FKBP12-HMG1/2 interactions could represent the first conserved function of FKBP12 other than mediating FK506 and rapamycin actions.  (+info)

RAD53 regulates DBF4 independently of checkpoint function in Saccharomyces cerevisiae. (18/7076)

The Cdc7p and Dbf4p proteins form an active kinase complex in Saccharomyces cerevisiae that is essential for the initiation of DNA replication. A genetic screen for mutations that are lethal in combination with cdc7-1 led to the isolation of seven lsd (lethal with seven defect) complementation groups. The lsd7 complementation group contained two temperature-sensitive dbf4 alleles. The lsd1 complementation group contained a new allele of RAD53, which was designated rad53-31. RAD53 encodes an essential protein kinase that is required for the activation of DNA damage and DNA replication checkpoint pathways, and that is implicated as a positive regulator of S phase. Unlike other RAD53 alleles, we demonstrate that the rad53-31 allele retains an intact checkpoint function. Thus, the checkpoint function and the DNA replication function of RAD53 can be functionally separated. The activation of DNA replication through RAD53 most likely occurs through DBF4. Two-hybrid analysis indicates that the Rad53p protein binds to Dbf4p. Furthermore, the steady-state level of DBF4 message and Dbf4p protein is reduced in several rad53 mutant strains, indicating that RAD53 positively regulates DBF4. These results suggest that two different functions of the cell cycle, initiation of DNA replication and the checkpoint function, can be coordinately regulated through the common intermediate RAD53.  (+info)

Fus3p and Kss1p control G1 arrest in Saccharomyces cerevisiae through a balance of distinct arrest and proliferative functions that operate in parallel with Far1p. (19/7076)

In Saccharomyces cerevisiae, mating pheromones activate two MAP kinases (MAPKs), Fus3p and Kss1p, to induce G1 arrest prior to mating. Fus3p is known to promote G1 arrest by activating Far1p, which inhibits three Clnp/Cdc28p kinases. To analyze the contribution of Fus3p and Kss1p to G1 arrest that is independent of Far1p, we constructed far1 CLN strains that undergo G1 arrest from increased activation of the mating MAP kinase pathway. We find that Fus3p and Kss1p both control G1 arrest through multiple functions that operate in parallel with Far1p. Fus3p and Kss1p together promote G1 arrest by repressing transcription of G1/S cyclin genes (CLN1, CLN2, CLB5) by a mechanism that blocks their activation by Cln3p/Cdc28p kinase. In addition, Fus3p and Kss1p counteract G1 arrest through overlapping and distinct functions. Fus3p and Kss1p together increase the expression of CLN3 and PCL2 genes that promote budding, and Kss1p inhibits the MAP kinase cascade. Strikingly, Fus3p promotes proliferation by a novel function that is not linked to reduced Ste12p activity or increased levels of Cln2p/Cdc28p kinase. Genetic analysis suggests that Fus3p promotes proliferation through activation of Mcm1p transcription factor that upregulates numerous genes in G1 phase. Thus, Fus3p and Kss1p control G1 arrest through a balance of arrest functions that inhibit the Cdc28p machinery and proliferative functions that bypass this inhibition.  (+info)

Interaction of 5-lipoxygenase with cellular proteins. (20/7076)

5-Lipoxygenase (5LO) plays a pivotal role in cellular leukotriene synthesis. To identify proteins interacting with human 5LO, we used a two-hybrid approach to screen a human lung cDNA library. From a total of 1.5 x 10(7) yeast transformants, nine independent clones representing three different proteins were isolated and found to specifically interact with 5LO. Four 1.7- to 1.8-kb clones represented a 16-kDa protein named coactosin-like protein for its significant homology with coactosin, a protein found to be associated with actin in Dictyostelium discoideum. Coactosin-like protein thus may provide a link between 5LO and the cytoskeleton. Two other yeast clones of 1.5 kb encoded transforming growth factor (TGF) type beta receptor-I-associated protein 1 partial cDNA. TGF type beta receptor-I-associated protein 1 recently has been reported to associate with the activated form of the TGF beta receptor I and may be involved in the TGF beta-induced up-regulation of 5LO expression and activity observed in HL-60 and Mono Mac 6 cells. Finally, three identical 2.1-kb clones contained the partial cDNA of a human protein with high homology to a hypothetical helicase K12H4. 8 from Caenorhabditis elegans and consequently was named DeltaK12H4. 8 homologue. Analysis of the predicted amino acid sequence revealed the presence of a RNase III motif and a double-stranded RNA binding domain, indicative of a protein of nuclear origin. The identification of these 5LO-interacting proteins provides additional approaches to studies of the cellular functions of 5LO.  (+info)

A binding site for homeodomain and Pax proteins is necessary for L1 cell adhesion molecule gene expression by Pax-6 and bone morphogenetic proteins. (21/7076)

The cell adhesion molecule L1 regulates axonal guidance and fasciculation during development. We previously identified the regulatory region of the L1 gene and showed that it was sufficient for establishing the neural pattern of L1 expression in transgenic mice. In the present study, we characterize a DNA element within this region called the HPD that contains binding motifs for both homeodomain and Pax proteins and responds to signals from bone morphogenetic proteins (BMPs). An ATTA sequence within the core of the HPD was required for binding to the homeodomain protein Barx2 while a separate paired domain recognition motif was necessary for binding to Pax-6. In cellular transfection experiments, L1-luciferase reporter constructs containing the HPD were activated an average of 4-fold by Pax-6 in N2A cells and 5-fold by BMP-2 and BMP-4 in Ng108 cells. Both of these responses were eliminated on deletion of the HPD from L1 constructs. In transgenic mice, deletion of the HPD from an L1-lacZ reporter resulted in a loss of beta-galactosidase expression in the telencephalon and mesencephalon. Collectively, our experiments indicate that the HPD regulates L1 expression in neural tissues via homeodomain and Pax proteins and is likely to be a target of BMP signaling during development.  (+info)

Mutation in GDP-fucose synthesis genes of Sinorhizobium fredii alters Nod factors and significantly decreases competitiveness to nodulate soybeans. (22/7076)

We mutagenized Sinorhizobium fredii HH103-1 with Tn5-B20 and screened about 2,000 colonies for increased beta-galactosidase activity in the presence of the flavonoid naringenin. One mutant, designated SVQ287, produces lipochitooligosaccharide Nod factors (LCOs) that differ from those of the parental strain. The nonreducing N-acetylglucosamine residues of all of the LCOs of mutant SVQ287 lack fucose and 2-O-methylfucose substituents. In addition, SVQ287 synthesizes an LCO with an unusually long, C20:1 fatty acyl side chain. The transposon insertion of mutant SVQ287 lies within a 1.1-kb HindIII fragment. This and an adjacent 2.4-kb HindIII fragment were sequenced. The sequence contains the 3' end of noeK, nodZ, and noeL (the gene interrupted by Tn5-B20), and the 5' end of nolK, all in the same orientation. Although each of these genes has a similarly oriented counterpart on the symbiosis plasmid of the broad-host-range Rhizobium sp. strain NGR234, there are significant differences in the noeK/nodZ intergenic region. Based on amino acid sequence homology, noeL encodes GDP-D-mannose dehydratase, an enzyme involved in the synthesis of GDP-L-fucose, and nolK encodes a NAD-dependent nucleotide sugar epimerase/dehydrogenase. We show that expression of the noeL gene is under the control of NodD1 in S. fredii and is most probably mediated by the nod box that precedes nodZ. Transposon insertion into neoL has two impacts on symbiosis with Williams soybean: nodulation rate is reduced slightly and competitiveness for nodulation is decreased significantly. Mutant SVQ287 retains its ability to form nitrogen-fixing nodules on other legumes, but final nodule number is attenuated on Cajanus cajan.  (+info)

A subpopulation of apoptosis-prone cardiac neural crest cells targets to the venous pole: multiple functions in heart development? (23/7076)

A well-described population of cardiac neural crest (NC) cells migrates toward the arterial pole of the embryonic heart and differentiates into various cell types, including smooth muscle cells of the pharyngeal arch arteries (but not the coronary arteries), cardiac ganglionic cells, and mesenchymal cells of the aortopulmonary septum. Using a replication-incompetent retrovirus containing the reporter gene LacZ, administered to the migratory neural crest of chicken embryos, we demonstrated another population of cardiac neural crest cells that employs the venous pole as entrance to the heart. On the basis of our present data we cannot exclude the possibility that precursors of these cells might not only originate from the dorsal part of the posterior rhombencephalon, but also from the ventral part. These NC cells migrate to locations surrounding the prospective conduction system as well as to the atrioventricular (AV) cushions. Concerning the prospective conduction system, the tagged neural crest cells can be found in regions where the atrioventricular node area, the retroaortic root bundle, the bundle of His, the left and right bundle branches, and the right atrioventricular ring bundle are positioned. The last area connects the posteriorly located AV node area with the retroaortic root bundle, which receives its neural crest cells through the arterial pole in concert with the cells giving rise to the aortopulmonary septum. The NC cells most probably do not form the conduction system proper, as they enter an apoptotic pathway as determined by concomitant TUNEL detection. It is possible that the NC cells in the heart become anoikic and, as a consequence, fail to differentiate further and merely die. However, because of the perfect timing of the arrival of crest cells, their apoptosis, and a change in electrophysiological behavior of the heart, we postulate that neural crest cells play a role in the last phase of differentiation of the cardiac conduction system. Alternatively, the separation of the central conduction system from the surrounding working myocardium is mediated by apoptotic neural crest cells. As for the presence of NC cells in both the outflow tract and the AV cushions, followed by apoptosis, a function is assigned in the muscularization of both areas, resulting in proper septation of the outflow tract and of the AV region. Failure of normal neural crest development may not only play a role in cardiac outflow tract anomalies but also in inflow tract abnormalities, such as atrioventricular septal defects.  (+info)

Adventitial delivery minimizes the proinflammatory effects of adenoviral vectors. (24/7076)

PURPOSE: Adenovirus-mediated arterial gene transfer is a promising tool in the study of vascular biology and the development of vascular gene therapy. However, intraluminal delivery of adenoviral vectors causes vascular inflammation and neointimal formation. Whether these complications could be avoided and gene transfer efficiency maintained by means of delivering adenoviral vectors via the adventitia was studied. METHODS: Replication-defective adenoviral vectors encoding a beta-galactosidase (beta-gal) gene (AdRSVnLacZ) or without a recombinant gene (AdNull) were infused into the lumen or the adventitia of rabbit carotid arteries. Two days after infusion of either AdRSVnLacZ (n = 8 adventitial, n = 8 luminal) or AdNull (n = 4 luminal), recombinant gene expression was quantitated by histochemistry (performed on tissue sections) and with a beta-gal activity assay (performed on vessel extracts). Inflammation caused by adenovirus infusion was assessed 14 days after infusion of either AdNull (n = 6) or vehicle (n = 6) into the carotid adventitia. Inflammation was assessed by means of examination of histologic sections for the presence of neointimal formation and infiltrating T cells and for the expression of markers of vascular cell activation (ICAM-1 and VCAM-1). To measure the systemic immune response to adventitial infusion of adenovirus, plasma samples (n = 3) were drawn 14 days after infusion of AdNull and assayed for neutralizing antibodies. RESULTS: Two days after luminal infusion of AdRSVnLacZ, approximately 30% of luminal endothelial cells expressed beta-gal. Similarly, 2 days after infusion of AdRSVnLacZ to the adventitia, approximately 30% of adventitial cells expressed beta-gal. beta-gal expression was present in the carotid adventitia, the internal jugular vein adventitia, and the vagus nerve perineurium. Elevated beta-gal activity (50- to 80-fold more than background; P <.05) was detected in extracts made from all AdRSVnLacZ-transduced arteries. The amount of recombinant protein expression per vessel did not differ significantly between vessels transduced via the adventitia (17.1 mU/mg total protein [range, 8.1 to 71.5]) and those transduced via a luminal approach (10.0 mU/mg total protein [range, 3.9 to 42.6]). Notably, adventitial delivery of AdNull did not cause neointimal formation. In addition, vascular inflammation in arteries transduced via the adventitia (ie, T-cell infiltrates and ICAM-1 expression) was confined to the adventitia, sparing both the intima and media. Antiadenoviral neutralizing antibodies were present in all rabbits after adventitial delivery of AdNull. CONCLUSION: Infusion of adenoviral vectors into the carotid artery adventitia achieves recombinant gene expression at a level equivalent to that achieved by means of intraluminal vector infusion. Because adventitial gene transfer can be performed by means of direct application during open surgical procedures, this technically simple procedure may be more clinically applicable than intraluminal delivery. Moreover, despite the generation of a systemic immune response, adventitial infusion had no detectable pathologic effects on the vascular intima or media. For these reasons, adventitial gene delivery may be a particularly useful experimental and clinical tool.  (+info)